A Local Ring such that the Map between Grothendieck Groups with Rational Coefficients Induced by Completion Is Not Injective

KAZUHIKO KURANO & VASUDEVAN SRINIVAS

Dedicated to Professor Melvin Hochster on the occasion of his 65th birthday

1. Introduction

In this paper, we construct a local ring A such that the kernel of the map $G_0(A)_{\mathbb{Q}} \rightarrow G_0(\hat{A})_{\mathbb{Q}}$ is not zero, where \hat{A} is the completion of A with respect to the maximal ideal and where $G_0(\cdot)_{\mathbb{Q}}$ is the Grothendieck group of finitely generated modules with rational coefficients. In our example, A is a 2-dimensional local ring that is essentially of finite type over \mathbb{C} , but it is not normal.

For a Noetherian ring R, we set

$$G_0(R) = \frac{\bigoplus_{M: \text{ f.g. } R-\text{mod.}} \mathbb{Z}[M]}{\langle [L] + [N] - [M] \mid 0 \to L \to M \to N \to 0 \text{ is exact} \rangle};$$

this is called the *Grothendieck group* of finitely generated *R*-modules. Here [*M*] denotes the free basis corresponding to a finitely generated *R*-module (f.g. *R*-mod.) *M* of the free module $\bigoplus \mathbb{Z}[M]$, where \mathbb{Z} is the ring of integers.

For a flat ring homomorphism $R \to A$, we have the induced map $G_0(R) \to G_0(A)$ defined by $[M] \mapsto [M \otimes_R A]$.

We are interested in the following problem (Question 1.4 in [7]).

PROBLEM 1.1. Let *R* be a Noetherian local ring. Is the map $G_0(R)_{\mathbb{Q}} \to G_0(\hat{R})_{\mathbb{Q}}$ injective?

Here \hat{R} denotes the m-adic completion of R, where m is the unique maximal ideal of R. For an abelian group N, $N_{\mathbb{Q}}$ denotes the tensor product with the field of rational numbers \mathbb{Q} .

Next we explain motivation and applications.

Assume that *S* is a regular scheme and that *X* is a scheme of finite type over *S*. Then, by the singular Riemann–Roch theorem [3], we obtain an isomorphism

$$\tau_{X/S}\colon G_0(X)_{\mathbb{Q}}\xrightarrow{\sim} A_*(X)_{\mathbb{Q}},$$

where $G_0(X)$ (resp. $A_*(X)$) is the *Grothendieck group* of coherent sheaves on X (resp. *Chow group* of X). We refer the reader to Chapters 1, 18, and 20 in [3] for

Received July 5, 2007. Revision received October 17, 2007.