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1. Introduction

In this paper we study the fibers of a rational map from an algebraic point of view.
We begin by describing four ideals related to such a fiber.

Let S = k[x0, . . . , xn] be a polynomial ring over an infinite field k with homoge-
neous maximal ideal m, let I ⊂ S be an ideal generated by an (r+1)-dimensional
vector space W of forms of the same degree, and let φ be the associated rational
map P n→ P r = P(W ). We will use this notation throughout. Since we are inter-
ested in the rational map, we may remove common divisors of W and thus assume
that I has codimension ≥ 2.

A k-rational point q in the target P r = P(W ) is by definition a codimension 1
subspace Wq of W. We write Iq ⊂ S for the ideal generated by Wq. By a homoge-
neous presentation of I we will always mean a homogeneous free presentation of
I with respect to a homogeneous minimal generating set. If F → G = S ⊗W is
such a presentation, then the composition F → G → S ⊗ (W/Wq) is called the
generalized row corresponding to q, and its image is called the generalized row
ideal corresponding to q. It is the ideal generated by the entries of a row in the ho-
mogeneous presentation matrix after a change of basis. From this we see that the
generalized row ideal corresponding to q is simply Iq : I.

The rational map φ is a morphism away from the algebraic set V(I ), and we
may form the fiber (= preimage) of the morphism over a point q ∈ P r. The satu-
rated ideal of the scheme-theoretic closure of this fiber is Iq : I∞, which we call
the morphism fiber ideal associated to q.

The rational map φ gives rise to a correspondence � ⊂ P n × P r, which is the
closure of the graph of the morphism induced by φ. There are projections

P n π1←− �
π2−→ P r,

and we define the correspondence fiber over q to be π1(π
−1
2 (q)). Since � is

BiProj(R), where R is the Rees algebra S [It] ⊂ S [t] of I, it follows that the cor-
respondence fiber is defined by the ideal
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