Quiver Coefficients of Dynkin Type

ANDERS SKOVSTED BUCH

1. Introduction

Let $Q = (Q_0, Q_1)$ be a quiver consisting of a finite set of vertices Q_0 and a finite set of arrows Q_1 . Each arrow $a \in Q_1$ has a head h(a) and a tail t(a) in Q_0 . For convenience we will assume that the vertex set is an integer interval, $Q_0 = \{1, 2, ..., n\}$. Let $e = (e_1, ..., e_n) \in \mathbb{N}^n$ be a dimension vector, and fix vector spaces $E_i = \mathbb{K}^{e_i}$ for $i \in Q_0$ over a field \mathbb{K} . The representations of Q on these vector spaces form the affine space $V = \bigoplus_{a \in Q_1} \text{Hom}(E_{t(a)}, E_{h(a)})$, which has a natural action of the group $\mathbb{G} = \text{GL}(E_1) \times \cdots \times \text{GL}(E_n)$ given by $(g_1, ..., g_n).(\phi_a)_{a \in Q_1} = (g_{h(a)}\phi_a g_{t(a)}^{-1})_{a \in Q_1}$.

Define a *quiver cycle* to be any \mathbb{G} -stable closed irreducible subvariety Ω in V. A quiver cycle determines an equivariant (Chow) cohomology class $[\Omega] \in H^*_{\mathbb{G}}(V)$ and an equivariant Grothendieck class $[\mathcal{O}_{\Omega}] \in K_{\mathbb{G}}(V)$. These classes are well understood when the quiver Q is *equioriented* of type A, that is, a sequence $\{1 \rightarrow 2 \rightarrow \cdots \rightarrow n\}$ of arrows in the same direction. In this case, a formula for the cohomology class $[\Omega]$ was given in joint work with Fulton [11], and this formula was generalized to *K*-theory in [8]. The *K*-theory formula states that the Grothendieck class $[\mathcal{O}_{\Omega}]$ is given by

$$[\mathcal{O}_{\Omega}] = \sum_{\mu} c_{\mu}(\Omega) \mathcal{G}_{\mu_{1}}(E_{2} - E_{1}) \mathcal{G}_{\mu_{2}}(E_{3} - E_{2}) \cdots \mathcal{G}_{\mu_{n-1}}(E_{n} - E_{n-1}) \in K_{\mathbb{G}}(V),$$

where the sum is over finitely many sequences $\mu = (\mu_1, ..., \mu_{n-1})$ of partitions μ_i . Each factor $\mathcal{G}_{\mu_i}(E_{i+1} - E_i)$ is obtained by applying the stable Grothendieck polynomial for μ_i to the standard representations of \mathbb{G} on E_{i+1} and E_i . This notation will be explained in Section 3.

The coefficients $c_{\mu}(\Omega)$ are interesting geometric and combinatorial invariants called (equioriented) *quiver coefficients*. They are integers and are nonzero only when the sum $\sum |\mu_i|$ of the weights of the partitions is greater than or equal to the codimension of Ω . The coefficients for which this sum equals $\operatorname{codim}(\Omega)$ describe the cohomology class of Ω and are called *cohomological quiver coefficients*. It was proved in [25] that cohomological quiver coefficients are nonnegative and in [10; 29] that the more general *K*-theoretic quiver coefficients have *alternating signs* in the sense that $(-1)^{\sum |\mu_i| - \operatorname{codim}(\Omega)} c_{\mu}(\Omega)$ is a nonnegative integer. These

Received August 22, 2007. Revision received January 24, 2008.

The author was partially supported by NSF Grant DMS-0603822.