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1. Introduction

Let X be a smooth projective variety defined over an algebraically closed field of
characteristic p > 0 with a fixed very ample line bundle OX(1). We denote by F

the absolute Frobenius morphism F : X → X, which is the identity on the topo-
logical space underlying X and the pth power map on the structure sheaf OX. A
vector bundle E on X descends under F if there exists a vector bundle F such
that E ∼= F ∗(F ). This paper is inspired by the preprint of Joshi [6]. In the rel-
ative situation, where a morphism X → SpecR with generic fiber X := X0 is
given and R is a Z-domain of finite type, Joshi asked the following question:
Assume X is a smooth projective variety and suppose V is a vector bundle that
descends under Frobenius modulo an infinite set of primes; then is it true that V
is semistable (with respect to any ample line bundle on X)?” He gives a positive
answer to this question for rank-2 vector bundles under the additional assumption
that Pic(X) = Z.

In Section 2 we provide a class of examples that give a negative answer to this
question in general. We show that, on the relative Fermat curve

C = V+(Xd + Y d + Zd) → Spec Z

with d ≥ 5 odd, there exists a vector bundle E of rank 2 such that for infinitely
many prime numbers p the reduction Ep = E |Cp modulo p has a Frobenius de-
scent, but E0 = E |C0 is not semistable on the fiber over the generic point. In
Section 3 we give an affirmative answer to this question under the assumption
that, for every closed point m ∈ SpecR, every semistable vector bundle on the
fiber Xm is strongly semistable. We recall that a semistable vector bundle E is
strongly semistable if F e∗(E ) is semistable for all integers e ≥ 0. This provides
further examples of varieties with Pic(X) 	= Z (e.g., abelian varieties) for which
the question of Joshi still has a positive answer.
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