Discreteness and Rationality of F-Thresholds

Manuel Blickle, Mircea Mustaţǎ, \& Karen E. Smith
Dedicated to Mel Hochster on the occasion of his sixty-fifth birthday

1. Introduction

In recent years, multiplier ideals have played an increasingly important role in higher-dimensional birational geometry. For a given ideal \mathfrak{a} on a smooth variety X and a real parameter $c>0$, the multiplier ideal $\mathcal{J}\left(\mathfrak{a}^{c}\right)$ is defined via a \log resolution of the pair (X, \mathfrak{a}). Recall that a log resolution is a proper birational map $\pi: X^{\prime} \rightarrow X$, with X^{\prime} smooth such that $\mathfrak{a} \mathcal{O}_{X^{\prime}}$ defines a simple normal crossing divisor $A=\sum_{i=1}^{r} a_{i} E_{i}$. Then, by definition,

$$
\begin{equation*}
\mathcal{J}\left(\mathfrak{a}^{c}\right):=\pi_{*} \mathcal{O}_{X^{\prime}}\left(K_{X^{\prime} / X}-\lfloor c A\rfloor\right), \tag{1}
\end{equation*}
$$

and this is an ideal of \mathcal{O}_{X} that does not depend on the chosen log resolution. A jumping coefficient (also called a jumping number or a jumping exponent) of \mathfrak{a} is a positive real number c such that $\mathcal{J}\left(\mathfrak{a}^{c}\right) \neq \mathcal{J}\left(\mathfrak{a}^{c-\varepsilon}\right)$ for every $\varepsilon>0$. These invariants were introduced and studied in [ELSV]. It follows from formula (1) that, if c is a jumping coefficient, then $c \cdot a_{i}$ is an integer for some i. In particular, every jumping coefficient is a rational number, and the set of jumping coefficients of a given ideal is discrete.

Hara and Yoshida [HaY] introduced a positive characteristic analogue of multiplier ideals, denoted by $\tau\left(\mathfrak{a}^{c}\right)$. This is a generalized test ideal for a tight closure theory with respect to the pair $\left(X, \mathfrak{a}^{c}\right)$. Similarly, one can define jumping numbers for such test ideals. These invariants were studied under the name of F-thresholds in [MTW], where it was shown that they satisfy many of the formal properties of the jumping coefficients in characteristic 0 .

We emphasize that the test ideals are not determined by a log resolution of singularities-even in cases where such a resolution is known to exist. Instead, the definition uses the Frobenius morphism and requires a priori infinitely many conditions to be checked. This lack of built-in finiteness makes the question of rationality and discreteness of the F-thresholds nontrivial, and in fact these properties were left open in [MTW].

In this paper we settle these questions in the case of a regular ring R that is essentially of finite type over an F-finite field. More precisely, we show that, for

[^0]
[^0]: Received October 13, 2006. Revision received October 27, 2007.
 The first author was partially supported by the DFG Schwerpunkt Komplexe Geometrie. The second and third authors were partially supported by the NSF under Grant nos. DMS 0500127 and DMS 0500823 , respectively.

