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& Karen E. Smith

Dedicated to Mel Hochster on the occasion of his sixty-fifth birthday

1. Introduction

In recent years, multiplier ideals have played an increasingly important role in
higher-dimensional birational geometry. For a given ideal a on a smooth variety
X and a real parameter c > 0, the multiplier ideal J (ac) is defined via a log res-
olution of the pair (X, a). Recall that a log resolution is a proper birational map
π : X ′ → X, with X ′ smooth such that aOX ′ defines a simple normal crossing
divisor A = ∑r

i=1 aiEi. Then, by definition,

J (ac) := π∗OX ′(KX ′/X − �cA�), (1)

and this is an ideal of OX that does not depend on the chosen log resolution. A
jumping coefficient (also called a jumping number or a jumping exponent) of a is
a positive real number c such that J (ac) �= J (ac−ε) for every ε > 0. These in-
variants were introduced and studied in [ELSV]. It follows from formula (1) that,
if c is a jumping coefficient, then c ·ai is an integer for some i. In particular, every
jumping coefficient is a rational number, and the set of jumping coefficients of a
given ideal is discrete.

Hara and Yoshida [HaY] introduced a positive characteristic analogue of mul-
tiplier ideals, denoted by τ(ac). This is a generalized test ideal for a tight closure
theory with respect to the pair (X, ac). Similarly, one can define jumping numbers
for such test ideals. These invariants were studied under the name of F -thresholds
in [MTW], where it was shown that they satisfy many of the formal properties of
the jumping coefficients in characteristic 0.

We emphasize that the test ideals are not determined by a log resolution of
singularities—even in cases where such a resolution is known to exist. Instead,
the definition uses the Frobenius morphism and requires a priori infinitely many
conditions to be checked. This lack of built-in finiteness makes the question of
rationality and discreteness of the F-thresholds nontrivial, and in fact these prop-
erties were left open in [MTW].

In this paper we settle these questions in the case of a regular ring R that is es-
sentially of finite type over an F-finite field. More precisely, we show that, for
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