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1. Introduction

Let M be a connected complex manifold and Aut(M) the group of all biholo-
morphic automorphisms of M. Then, equipped with the compact-open topology,
Aut(M) is a topological group acting continuously on M.

In 1907 it was shown by Poincaré [15] that the Riemann mapping theorem does
not hold in the higher-dimensional case. In fact, he proved that there exists no
biholomorphic mapping from the unit polydisc �2 onto the unit ball B2 in C

2

by comparing carefully the topological structures of the isotropy subgroups of
Aut(�2) and Aut(B2) at the origin o of C

2. In view of this fact, for a given com-
plex manifold M it is an interesting problem to bring out some complex analytic
nature of M under some topological conditions on Aut(M).

In connection with this problem, in this paper we would like to study the fol-
lowing question.

Question. LetM andN be connected complex manifolds and assume that their
holomorphic automorphism groups Aut(M) and Aut(N ) are isomorphic as topo-
logical groups. Then, is M biholomorphically equivalent to N?

Recall that there exist relatively compact strictly pseudoconvex domainsDt (t ∈ R)

in a complex manifold X such that Ds is not biholomorphically equivalent to Dt

unless s = t, and further, the only holomorphic automorphism of Dt is the iden-
tity for every t (see [3]). Thus, the answer to our question is negative, in general.
However, there already exist several articles solving this question affirmatively in
the case where the manifolds M or N are some special domains in C

n (see e.g. [4;
5; 6; 10; 11]). In particular, as an application of the classification theorem obtained
by Isaev and Kruzhilin [6] for complex manifolds of dimension n admitting effec-
tive actions of the unitary group U(n), Isaev [5] showed that if the holomorphic
automorphism group Aut(M) of a connected complex manifold M of dimension
n is isomorphic to the holomorphic automorhism group Aut(Bn) of the unit ball
Bn in C

n as topological groups, then M is biholomorphically equivalent to Bn.

In view of this, it would naturally be expected that exactly the same conclusion is
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