Interpolation by Entire Functions with Growth Conditions

Myriam Ounaïes

0. Introduction

Let $p: \mathbb{C} \rightarrow\left[0,+\infty\left[\right.\right.$ be a weight (see Definition 1.1) and let $A_{p}(\mathbb{C})$ be the vector space of all entire functions satisfying $\sup _{z \in \mathbb{C}}|f(z)| \leq \exp (-B p(z))<\infty$ for some constant $B>0$. For instance, if $p(z)=|z|$, then $A_{p}(\mathbb{C})$ is the space of all entire functions of exponential type.

Following [3], the interpolation problem we are considering is as follows. Let $V=\left\{\left(z_{j}, m_{j}\right)\right\}_{j}$ be a multiplicity variety; that is, suppose $\left\{z_{j}\right\}_{j}$ is a sequence of complex numbers diverging to $\infty,\left|z_{j}\right| \leq\left|z_{j+1}\right|$, and $\left\{m_{j}\right\}_{j}$ is a sequence of strictly positive integers. Let $\left\{w_{j, l}\right\}_{j, 0 \leq l<m_{j}}$ be a doubly indexed sequence of complex numbers.

Under what conditions does there exist an entire function $f \in A_{p}(\mathbb{C})$ such that

$$
\frac{f^{(l)}\left(z_{j}\right)}{l!}=w_{j, l} \quad \forall j, \quad \forall 0 \leq l<m_{j} ?
$$

In other words, if we denote by ρ the restriction operator defined on $A_{p}(\mathbb{C})$ by

$$
\rho(f)=\left\{\frac{f^{l}\left(z_{j}\right)}{l!}\right\}_{j, 0 \leq l<m_{j}},
$$

what is the image of $A_{p}(\mathbb{C})$ by ρ ?
We say that V is an interpolating variety when $\rho\left(A_{p}(\mathbb{C})\right)$ is the space of all doubly indexed sequences $W=\left\{w_{j, l}\right\}$ satisfying the growth condition

$$
\left|w_{j, l}\right| \leq A \exp \left(B p\left(z_{j}\right)\right) \quad \forall j, \forall 0 \leq l<m_{j},
$$

for certain constants $A, B>0$.
We have the following important result.
Theorem 0.1 [2, Cor. 4.8]. V is an interpolating variety for $A_{p}(\mathbb{C})$ if and only if, for some constants $A, B>0$, the following conditions hold:
(i) for all $R>0, N(0, R) \leq A P(R)+B$;
(ii) for all $j \in \mathbb{N}, N\left(z_{j},\left|z_{j}\right|\right) \leq A P\left(z_{j}\right)+B$.

Here, $N(z, r)$ denotes the integrated counting function of V in the disc of center z and radius r (see Definition 1.3).

