Distribution of Modular Inverses and Multiples of Small Integers and the Sato-Tate Conjecture on Average

Igor E. Shparlinski

1. Introduction

1.1. Motivation

A rather old conjecture asserts that if $m=p$ is prime then, for any fixed $\varepsilon>0$ and sufficiently large p, for every integer a there are integers x and y with $|x|,|y| \leq$ $p^{1 / 2+\varepsilon}$ and such that $a \equiv x y(\bmod p)$; see $[14 ; 16 ; 17 ; 18]$ and references therein. The question has probably been motivated by the following observation. Using the Dirichlet pigeon-hole principle, one can easily show that, for every integer a, there exist integers x and y with $|x|,|y| \leq 2 p^{1 / 2}$ and with $a \equiv y / x(\bmod p)$. Unfortunately, this is known only with $|x|,|y| \geq C p^{3 / 4}$ for some absolute constant $C>0$, which is due to Garaev [15].

On the other hand, it has been shown in the series of works $[14 ; 16 ; 17 ; 18]$ that the congruence $a \equiv x y(\bmod p)$ is solvable for all but $o(m)$ values of $a=$ $1, \ldots, m-1$, where x and y are significantly smaller than $m^{3 / 4}$. In particular, it is shown by Garaev and Karatsuba [17] for x and y in the range $1 \leq x, y \leq$ $m^{1 / 2}(\log m)^{1+\varepsilon}$. Certainly this result is very sharp. Indeed, it has been observed by Garaev [14] that well-known estimates for integers with a divisor in a given interval immediately imply that, for any $\varepsilon>0$, almost all residue classes modulo m are not of the form $x y(\bmod m)$ with $1 \leq x, y \leq m^{1 / 2}(\log m)^{\kappa-\varepsilon}$, where

$$
\kappa=1-\frac{1+\log \log 2}{\log 2}=0.08607 \ldots
$$

One can also derive from [10] that, for any $\varepsilon>0$, the inequality

$$
\max \{|x|,|y|: x y \equiv 1(\bmod m)\} \geq m^{1 / 2}(\log m)^{\kappa / 2}(\log \log m)^{3 / 4-\varepsilon}
$$

holds:

- for all positive integers $m \leq M$, except for possibly $o(M)$ of them;
- for all prime $m=p \leq M$, except for possibly $o(M / \log M)$ of them.

Similar questions about the ratios x / y have also been studied; see $[14 ; 17 ; 28]$.

[^0]
[^0]: Received December 5, 2006. Revision received July 5, 2007.
 This work was supported in part by ARC grant DP0556431.

