
Michigan Math. J. 56 (2008)

On Sections of Elliptic Fibrations

Mustafa Korkmaz & Burak Ozbagci

1. Introduction

It is well known that two generic cubics P and Q in CP 2 intersect each other in
nine points z1, . . . , z9. By constructing the corresponding pencil of curves

{sP + tQ | [s : t] ∈ CP 1}
one can define a map f : CP 2 − {z1, . . . , z9} → CP 1. After blowing up CP 2 at
{z1, . . . , z9} one can extend f to a Lefschetz fibration π : E(1) = CP 2 # 9CP 2 →
CP 1 with nine distinguished sections and whose generic fiber is an elliptic curve.
Our aim in this paper is to describe an analogous construction in the smooth cat-
egory, but unfortunately we do not know whether our construction arises from
an algebraic pencil of curves. Nevertheless, many 4-manifold topologists were
curious about such a differential topological construction (e.g., this was posed ex-
plicitly as a question in [4]).

Let �s
g,k denote the mapping class group of a compact connected orientable

genus-g surface with k boundary components and s marked points, so that diffeo-
morphisms and isotopies of the surface are assumed to fix the marked points and
the points on the boundary. (We will drop k if the surface is closed and drop s

if there are no fixed points.) A product
∏m

i=1 ti of right-handed Dehn twists in �g

provides a genus-g Lefschetz fibration X → D2 over the disk with closed fibers.
If

∏m
i=1 ti = 1 in �g then the fibration closes up to a fibration over the sphere S 2.

A lift of the relation
∏m

i=1 ti = 1 to �k
g shows the existence of k disjoint sections

of the induced Lefschetz fibration. The self-intersection of the j th section is −nj

if
∏m

i=1 ti = t
n1
δ1

· · · t nk

δk
in �g,k for some positive integers n1, . . . , nk , where the tδi

are right-handed Dehn twists along circles parallel to the boundary components of
the surface at hand (cf. [3]).

On the other hand, an expression of the form
∏m

i=1 ti = tδ1 · · · tδk
in �g,k naturally

describes a Lefschetz pencil: the relation determines a Lefschetz fibration with k

disjoint sections, where each section has self-intersection −1, and after blowing
these sections down we get a Lefschetz pencil (cf. [4]). Conversely, blowing up the
base locus of a Lefschetz pencil yields a Lefschetz fibration that can be captured
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