On the Equation $\tau(\lambda(n)) = \omega(n) + k$

A. GLIBICHUK, F. LUCA, & F. PAPPALARDI

1. Introduction

For every positive integer *n*, the function $\tau(n)$ counts the number of divisors of *n*, the function $\omega(n)$ counts the number of distinct prime divisors of *n*, and the Carmichael function $\lambda(n)$ is the exponent of the multiplicative group of the invertible congruence classes modulo *n*. The value of the function $\lambda(n)$ can be computed as follows:

$$\lambda(n) = \begin{cases} 1 & \text{if } n = 1; \\ 2^{\alpha - 2} & \text{if } n = 2^{\alpha}, \, \alpha > 2; \\ p^{\alpha - 1}(p - 1) & \text{if } n = p^{\alpha} \text{ and } p \ge 3 \text{ or } \\ p = 2, \, \alpha \le 2; \\ [\lambda(p_1^{\alpha_1}), \dots, \lambda(p_s^{\alpha_s})] & \text{if } n = p_1^{\alpha_1} \cdots p_s^{\alpha_s}. \end{cases}$$

In [6], Erdős, Pomerance, and Schmutz proved a number of fundamental properties of λ . In the process of proving the lower bound $\lambda(n) > (\log n)^{c_0 \log \log \log n}$ for all large *n* (provided $c_0 < 1/\log 2$), they proved the inequality

$$n \leq (4\lambda(n))^{3\tau(\lambda(n))}$$
.

Numerical calculations suggest that the stronger inequality

$$n \le \lambda(n)^{\tau(\lambda(n))} \tag{1}$$

holds except for n = 2, 6, 8, 12, 24, 80, 120, 240. This will be proved in Corollary 1. One of the tools for proving (1) is the inequality $\tau(\lambda(n)) > \omega(n)$, which holds except for n = 2, 6, 12, 24, 30, 60, 120, 240; we will prove this in Proposition 1 and Proposition 2.

This motivates us to compare $\tau(\lambda(n))$ with $\omega(n)$. Since $\tau(\lambda(n)) \ge \omega(n)$ holds for all positive integers *n* (see Proposition 1), we can write $\tau(\lambda(n)) = \omega(n) + k$, where *k* is some nonnegative integer depending on *n*. We then fix $k \ge 0$ and investigate the positive integers *n* such that $\tau(\lambda(n)) = \omega(n) + k$.

Throughout this paper, we use x to denote a positive real number. We also use the Landau symbols O and o and the Vinogradov symbols \gg and \ll with their

Received October 10, 2006. Revision received May 11, 2007.

F. L. and F. P. were supported in part by the Italian–Mexican Agreement of Scientific and Technological Cooperation 2003–2005: *Kleinian Groups and Egyptian Fractions*. A.G. was supported by Russia president's Grant RF NS-5813.2006.1.