On the Equation $\tau(\lambda(n))=\omega(n)+k$

A. Glibichuk, F. Luca, \& F. Pappalardi

1. Introduction

For every positive integer n, the function $\tau(n)$ counts the number of divisors of n, the function $\omega(n)$ counts the number of distinct prime divisors of n, and the Carmichael function $\lambda(n)$ is the exponent of the multiplicative group of the invertible congruence classes modulo n. The value of the function $\lambda(n)$ can be computed as follows:

$$
\lambda(n)= \begin{cases}1 & \text { if } n=1 ; \\ 2^{\alpha-2} & \text { if } n=2^{\alpha}, \alpha>2 ; \\ p^{\alpha-1}(p-1) & \text { if } n=p^{\alpha} \text { and } p \geq 3 \text { or } \\ {\left[\lambda\left(p_{1}^{\alpha_{1}}\right), \ldots, \lambda\left(p_{s}^{\alpha_{s}}\right)\right]} & \text { if } n=p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}} .\end{cases}
$$

In [6], Erdős, Pomerance, and Schmutz proved a number of fundamental properties of λ. In the process of proving the lower bound $\lambda(n)>(\log n)^{c_{0} \log \log \log n}$ for all large n (provided $c_{0}<1 / \log 2$), they proved the inequality

$$
n \leq(4 \lambda(n))^{3 \tau(\lambda(n))}
$$

Numerical calculations suggest that the stronger inequality

$$
\begin{equation*}
n \leq \lambda(n)^{\tau(\lambda(n))} \tag{1}
\end{equation*}
$$

holds except for $n=2,6,8,12,24,80,120,240$. This will be proved in Corollary 1 . One of the tools for proving (1) is the inequality $\tau(\lambda(n))>\omega(n)$, which holds except for $n=2,6,12,24,30,60,120,240$; we will prove this in Proposition 1 and Proposition 2.

This motivates us to compare $\tau(\lambda(n))$ with $\omega(n)$. Since $\tau(\lambda(n)) \geq \omega(n)$ holds for all positive integers n (see Proposition 1), we can write $\tau(\lambda(n))=\omega(n)+k$, where k is some nonnegative integer depending on n. We then fix $k \geq 0$ and investigate the positive integers n such that $\tau(\lambda(n))=\omega(n)+k$.

Throughout this paper, we use x to denote a positive real number. We also use the Landau symbols O and o and the Vinogradov symbols \gg and \ll with their

[^0]
[^0]: Received October 10, 2006. Revision received May 11, 2007.
 F. L. and F. P. were supported in part by the Italian-Mexican Agreement of Scientific and Technological Cooperation 2003-2005: Kleinian Groups and Egyptian Fractions. A.G. was supported by Russia president's Grant RF NS-5813.2006.1.

