On Normal K3 Surfaces

Ichiro Shimada

1. Introduction

In this paper, by a $K 3$ surface we mean, unless otherwise stated, an algebraic $K 3$ surface defined over an algebraically closed field.

A $K 3$ surface X is said to be supersingular (in the sense of Shioda [23]) if the rank of the Picard lattice S_{X} of X is 22. Supersingular $K 3$ surfaces exist only when the characteristic of the base field is positive. Artin [3] showed that, if X is a supersingular $K 3$ surface in characteristic $p>0$, then the discriminant of S_{X} can be written as $-p^{2 \sigma_{X}}$, where σ_{X} is an integer with $0<\sigma_{X} \leq 10$. This integer σ_{X} is called the Artin invariant of X.

Let Λ_{0} be an even unimodular \mathbb{Z}-lattice of rank 22 with signature $(3,19)$. By the structure theorem for unimodular \mathbb{Z}-lattices (see e.g. [16, Chap. V]), the \mathbb{Z}-lattice Λ_{0} is unique up to isomorphisms. If X is a complex $K 3$ surface, then $H^{2}(X, \mathbb{Z})$ regarded as a \mathbb{Z}-lattice by the cup product is isomorphic to Λ_{0}. For an odd prime integer p and an integer σ with $0<\sigma \leq 10$, we denote by $\Lambda_{p, \sigma}$ an even \mathbb{Z}-lattice of rank 22 with signature $(1,21)$ such that the discriminant group $\operatorname{Hom}\left(\Lambda_{p, \sigma}, \mathbb{Z}\right) / \Lambda_{p, \sigma}$ is isomorphic to $(\mathbb{Z} / p \mathbb{Z})^{\oplus 2 \sigma}$. Rudakov and Shafarevich [14, Sec. 1, Thm.] showed that the \mathbb{Z}-lattice $\Lambda_{p, \sigma}$ is unique up to isomorphisms. If X is a supersingular $K 3$ surface in characteristic p with Artin invariant σ, then S_{X} is p-elementary by [14, Sec. 8, Thm.] and of signature $(1,21)$ by the Hodge index theorem; hence S_{X} is isomorphic to $\Lambda_{p, \sigma}$.

The primitive closure of a sublattice M of a \mathbb{Z}-lattice L is $\left(M \otimes_{\mathbb{Z}} \mathbb{Q}\right) \cap L$, where the intersection is taken in $L \otimes_{\mathbb{Z}} \mathbb{Q}$. A sublattice $M \subset L$ is said to be primitive if $\left(M \otimes_{\mathbb{Z}} \mathbb{Q}\right) \cap L=M$ holds. For \mathbb{Z}-lattices L and L^{\prime}, we consider the following condition.
$\operatorname{Emb}\left(L, L^{\prime}\right)$: There exists a primitive embedding of L into L^{\prime}.
We denote by \mathcal{P} the set of prime integers. For a nonzero integer m, we denote by $\mathcal{D}(m) \subset \mathcal{P}$ the set of prime divisors of m. We consider the following arithmetic condition on a nonzero integer d, a prime integer $p \in \mathcal{P} \backslash \mathcal{D}(2 d)$, and a positive integer $\sigma \leq 10$.

$$
\operatorname{Arth}(p, \sigma, d):\left(\frac{(-1)^{\sigma+1} d}{p}\right)=-1
$$

where $\left(\frac{x}{p}\right)$ is the Legendre symbol.

