On Normal K3 Surfaces

ICHIRO SHIMADA

1. Introduction

In this paper, by a *K*3 surface we mean, unless otherwise stated, an *algebraic K*3 surface defined over an algebraically closed field.

A K3 surface X is said to be *supersingular* (in the sense of Shioda [23]) if the rank of the Picard lattice S_X of X is 22. Supersingular K3 surfaces exist only when the characteristic of the base field is positive. Artin [3] showed that, if X is a supersingular K3 surface in characteristic p > 0, then the discriminant of S_X can be written as $-p^{2\sigma_X}$, where σ_X is an integer with $0 < \sigma_X \le 10$. This integer σ_X is called the *Artin invariant* of X.

Let Λ_0 be an even unimodular \mathbb{Z} -lattice of rank 22 with signature (3, 19). By the structure theorem for unimodular \mathbb{Z} -lattices (see e.g. [16, Chap. V]), the \mathbb{Z} -lattice Λ_0 is unique up to isomorphisms. If *X* is a complex *K*3 surface, then $H^2(X, \mathbb{Z})$ regarded as a \mathbb{Z} -lattice by the cup product is isomorphic to Λ_0 . For an *odd* prime integer *p* and an integer σ with $0 < \sigma \leq 10$, we denote by $\Lambda_{p,\sigma}$ an even \mathbb{Z} -lattice of rank 22 with signature (1, 21) such that the discriminant group Hom $(\Lambda_{p,\sigma}, \mathbb{Z})/\Lambda_{p,\sigma}$ is isomorphic to $(\mathbb{Z}/p\mathbb{Z})^{\oplus 2\sigma}$. Rudakov and Shafarevich [14, Sec. 1, Thm.] showed that the \mathbb{Z} -lattice $\Lambda_{p,\sigma}$ is unique up to isomorphisms. If *X* is a supersingular *K*3 surface in characteristic *p* with Artin invariant σ , then S_X is *p*-elementary by [14, Sec. 8, Thm.] and of signature (1, 21) by the Hodge index theorem; hence S_X is isomorphic to $\Lambda_{p,\sigma}$.

The *primitive closure* of a sublattice M of a \mathbb{Z} -lattice L is $(M \otimes_{\mathbb{Z}} \mathbb{Q}) \cap L$, where the intersection is taken in $L \otimes_{\mathbb{Z}} \mathbb{Q}$. A sublattice $M \subset L$ is said to be *primitive* if $(M \otimes_{\mathbb{Z}} \mathbb{Q}) \cap L = M$ holds. For \mathbb{Z} -lattices L and L', we consider the following condition.

 $\operatorname{Emb}(L, L')$: There exists a primitive embedding of L into L'.

We denote by \mathcal{P} the set of prime integers. For a nonzero integer *m*, we denote by $\mathcal{D}(m) \subset \mathcal{P}$ the set of prime divisors of *m*. We consider the following arithmetic condition on a nonzero integer *d*, a prime integer $p \in \mathcal{P} \setminus \mathcal{D}(2d)$, and a positive integer $\sigma \leq 10$.

Arth
$$(p,\sigma,d)$$
: $\left(\frac{(-1)^{\sigma+1}d}{p}\right) = -1,$

where $\left(\frac{x}{p}\right)$ is the Legendre symbol.

Received July 19, 2006. Revision received April 17, 2007.