Rational Curves on Blowing-ups of Projective Spaces

BUMSIG KIM, YONGNAM LEE, & KYUNGHO OH

1. Introduction

Let $\operatorname{Mor}_{\beta}(\mathbb{P}^{1}, Y)$ denote the moduli space of morphisms f from a complex projective line \mathbb{P}^{1} to a smooth complex projective variety Y such that $f_{*}[\mathbb{P}^{1}] = \beta$, where β is a given second homology class of Y. We study the irreducibility and the rational connectedness of the moduli space when Y is a successive blowing-up of a product of projective spaces with a suitable condition on β .

Before stating the Main Theorem proven in this paper, we introduce some notation. Let $X = \prod_{k=1}^{m} \mathbb{P}^{n_k}$, $X_0 = X$, and let $\pi_i \colon X_i \to X_{i-1}$ (i = 1, ..., r) be a blowing-up of X_{i-1} along a smooth irreducible subvariety Z_i . Let $E_i^t \subset X_r$ be the total transform $(\pi_i \circ \cdots \circ \pi_r)^{-1}Z_i$ of the exceptional divisor associated to Z_i , and let H_k be the divisor class coming from the hyperplane class of the *k*th projective space \mathbb{P}^{n_k} . Let $m_i = \#\{Z_j \mid j < i, (\pi_j \circ \cdots \circ \pi_r)^{-1}(Z_j) \supset E_i^t\}$. So general points of Z_i are the (m_i) th infinitesimal points of X. Denote by $\operatorname{Mor}_{\beta}(\mathbb{P}^1, X_r)^{\sharp}$ the open sublocus of $\operatorname{Mor}_{\beta}(\mathbb{P}^1, X_r)$ consisting of those f whose images do not lie on exceptional divisors: $f(\mathbb{P}^1) \nsubseteq E_i^t$ for all i.

MAIN THEOREM. Assume that $\beta \cdot (\pi^* H_k - \sum_{i=1}^r (m_i + 1)E_i^t) \ge 0$ for all k and that $\beta \cdot E_i^t \ge 0$ for all i, where $\pi = \pi_1 \circ \cdots \circ \pi_r$.

- (1) The moduli space $\operatorname{Mor}_{\beta}(\mathbb{P}^1, X_r)^{\sharp}$ consists of free morphisms and is an irreducible smooth variety of expected dimension.
- (2) If Z_i are rationally connected for all *i*, then a projective and birational model of $Mor_{\beta}(\mathbb{P}^1, X_r)^{\sharp}$ is also rationally connected.
- (3) The moduli space Mor_β(P¹, X_r) is smooth, and Mor_β(P¹, X_r)[♯] is dense in Mor_β(P¹, X_r), if one of the following conditions hold:
 - (a) all $\pi(E_i^t)$ are points in X;
 - (b) all centers Z_i are convex (i.e., $H^1(\mathbb{P}^1, g^*T_{Z_i}) = 0$ for any morphism $g: \mathbb{P}^1 \to Z_i$), and $\pi(E_i^t)$ are disjoint to $\pi(E_i^t)$ for any $i \neq j$.

Note that the irreducibility (respectively, the rational connectedness of a projective, birational model) of the morphism space $Mor_{\beta}(\mathbb{P}^1, X_r)$ implies the irreducibility of the moduli space of rational curves *C* with numerical condition $[C] = \beta$.

Received June 1, 2006. Revision received December 20, 2006.

This work was supported by Korea Research Foundation Grant no. KRF-2004-042-C00005.