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1. Introduction and Results

In the survey paper [3], the authors asked for an effective formula for the Cara-
théodory distance cA2,3 on the Neil parabola A2,3 (in the bidisc). Such a formula
was presented in a more recent paper by Knese [4]. To repeat the main result of
[4], we recall that the Neil parabola is given by A2,3 := {(z,w) ∈ D2 : z2 = w3},
where D denotes the open unit disc in the complex plane. Then there is the natu-
ral parameterization p2,3 : D → A2,3, p2,3(λ) := (λ3, λ2). Moreover, let ρ denote
the Poincaré distance of the unit disc. Recall that

ρ(λ,µ) := 1

2
log

1 + mD(λ,µ)

1 − mD(λ,µ)
,

where

mD(λ,µ) :=
∣∣∣∣ λ − µ

1 − λµ̄

∣∣∣∣, λ,µ∈ D.

Let λ,µ∈ D. Then Knese’s result is

cA2,3(p2,3(λ),p2,3(µ)) =
{

ρ(λ2,µ2) if |α0| ≥ 1,

ρ
(
λ2 α0−λ

1−ᾱ0λ
,µ2 α0−µ

1−ᾱ0µ

)
if |α0| < 1,

where α0 := α0(λ,µ) := 1
2 (λ + 1/λ̄ + µ + 1/µ̄). If λµ = 0 then the formula

should be read as if |α0| ≥ 1.
Observe that if λ and µ have a nonobtuse angle—that is, if Re(λµ̄) ≥ 0—then

|α0(λ,µ)| > 1 (cf. Corollary 2).
Moreover, in [4] the formula for the Carathéodory–Reiffen pseudometric γA2,3

is given as

γA2,3((a, b);X) =




|X2| if a = b = 0 and |X2| ≥ 2|X1|,
4|X1|2+|X2|2

4|X1| if a = b = 0 and |X2| < 2|X1|,
2|λb|

1−|b|2 if (a, b) �= (0, 0) and X = λ(3a, 2b), λ∈ C,

where (a, b)∈A2,3 and X ∈ T(a,b)A2,3 := the tangent space in (a, b) at A2,3.
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