Invariant Metrics and Distances on Generalized Neil Parabolas

Nikolai Nikolov \& Peter Pflug

1. Introduction and Results

In the survey paper [3], the authors asked for an effective formula for the Carathéodory distance $c_{A_{2,3}}$ on the Neil parabola $A_{2,3}$ (in the bidisc). Such a formula was presented in a more recent paper by Knese [4]. To repeat the main result of [4], we recall that the Neil parabola is given by $A_{2,3}:=\left\{(z, w) \in \mathbb{D}^{2}: z^{2}=w^{3}\right\}$, where \mathbb{D} denotes the open unit disc in the complex plane. Then there is the natural parameterization $p_{2,3}: \mathbb{D} \rightarrow A_{2,3}, p_{2,3}(\lambda):=\left(\lambda^{3}, \lambda^{2}\right)$. Moreover, let ρ denote the Poincaré distance of the unit disc. Recall that

$$
\rho(\lambda, \mu):=\frac{1}{2} \log \frac{1+m_{\mathbb{D}}(\lambda, \mu)}{1-m_{\mathbb{D}}(\lambda, \mu)},
$$

where

$$
m_{\mathbb{D}}(\lambda, \mu):=\left|\frac{\lambda-\mu}{1-\lambda \bar{\mu}}\right|, \quad \lambda, \mu \in \mathbb{D}
$$

Let $\lambda, \mu \in \mathbb{D}$. Then Knese's result is

$$
c_{A_{2,3}}\left(p_{2,3}(\lambda), p_{2,3}(\mu)\right)= \begin{cases}\rho\left(\lambda^{2}, \mu^{2}\right) & \text { if }\left|\alpha_{0}\right| \geq 1 \\ \rho\left(\lambda^{2} \frac{\alpha_{0}-\lambda}{1-\bar{\alpha}_{0} \lambda}, \mu^{2} \frac{\alpha_{0}-\mu}{1-\bar{\alpha}_{0} \mu}\right) & \text { if }\left|\alpha_{0}\right|<1,\end{cases}
$$

where $\alpha_{0}:=\alpha_{0}(\lambda, \mu):=\frac{1}{2}(\lambda+1 / \bar{\lambda}+\mu+1 / \bar{\mu})$. If $\lambda \mu=0$ then the formula should be read as if $\left|\alpha_{0}\right| \geq 1$.

Observe that if λ and μ have a nonobtuse angle-that is, if $\operatorname{Re}(\lambda \bar{\mu}) \geq 0$-then $\left|\alpha_{0}(\lambda, \mu)\right|>1$ (cf. Corollary 2).

Moreover, in [4] the formula for the Carathéodory-Reiffen pseudometric $\gamma_{A_{2,3}}$ is given as

$$
\gamma_{A_{2,3}}((a, b) ; X)= \begin{cases}\left|X_{2}\right| & \text { if } a=b=0 \text { and }\left|X_{2}\right| \geq 2\left|X_{1}\right| \\ \frac{4\left|X_{1}\right|^{2}+\left|X_{2}\right|^{2}}{4\left|X_{1}\right|} & \text { if } a=b=0 \text { and }\left|X_{2}\right|<2\left|X_{1}\right| \\ \frac{2|\lambda b|}{1-|b|^{2}} & \text { if }(a, b) \neq(0,0) \text { and } X=\lambda(3 a, 2 b), \lambda \in \mathbb{C}\end{cases}
$$

where $(a, b) \in A_{2,3}$ and $X \in T_{(a, b)} A_{2,3}:=$ the tangent space in (a, b) at $A_{2,3}$.

[^0]
[^0]: Received March 28, 2006. Revision received March 20, 2007.
 This paper was written during the stay of the first-named author at the Universität Oldenburg supported by a grant from the DFG (January-March 2006). He would like to thank both institutions for their support. The authors thank P. Zapalowski for pointing out some errors in an earlier version of the paper.

