Nonremovable Sets for Hölder Continuous Quasiregular Mappings in the Plane

ALBERT CLOP

1. Introduction

Let $\alpha \in (0, 1)$. A function $f : \mathbb{C} \to \mathbb{C}$ is said to be *locally* α -*Hölder continuous*, that is, $f \in \text{Lip}_{\alpha}(\mathbb{C})$, if

$$|f(z) - f(w)| \le C|z - w|^{\alpha} \tag{1}$$

whenever $z, w \in \mathbb{C}$ and |z - w| < 1. A set $E \subset \mathbb{C}$ is said to be *removable* for α -Hölder continuous analytic functions if every function $f \in \operatorname{Lip}_{\alpha}(\mathbb{C})$, holomorphic on $\mathbb{C} \setminus E$, is actually an entire function. It turns out that there is a characterization of these sets *E* in terms of Hausdorff measures. For $\alpha \in (0, 1)$, Dolženko [7] proved that a set *E* is removable for α -Hölder continuous analytic functions if and only if $\mathcal{H}^{1+\alpha}(E) = 0$. When $\alpha = 1$, we deal with the class of Lipschitz continuous analytic functions. Although the same characterization holds, a more involved argument, due to Uy [12], is needed to show that sets of positive area are not removable.

The same question may be asked in the more general setting of *K*-quasiregular mappings. Given a domain $\Omega \subset \mathbb{C}$ and $K \ge 1$, one says that a mapping $f : \Omega \to \mathbb{C}$ is *K*-quasiregular in Ω if f is a $W_{loc}^{1,2}(\Omega)$ solution of the Beltrami equation

$$\partial f(z) = \mu(z)\partial f(z)$$

for almost every $z \in \Omega$; here μ , the Beltrami coefficient, is a measurable function such that $|\mu(z)| \leq \frac{K-1}{K+1}$ at almost every $z \in \Omega$. If *f* is a homeomorphism, then *f* is said to be *K*-quasiconformal. When $\mu = 0$, we recover the classes of analytic functions and conformal mappings on Ω , respectively.

It was shown in [6] that if *E* is a compact set satisfying $\mathcal{H}^d(E) = 0$ for $d = 2\frac{1+\alpha K}{1+K}$, then *E* is removable for α -Hölder continuous *K*-quasiregular mappings. This means that any function $f \in \text{Lip}_{\alpha}(\mathbb{C})$, *K*-quasiregular in $\mathbb{C} \setminus E$, is actually *K*-quasiregular on the whole plane. To look for results in the converse direction, one observes that any compact set *E* with $\mathcal{H}^{1+\alpha}(E) > 0$ is nonremovable for holomorphic functions and hence also for *K*-quasiregular mappings in Lip_{α} . We are thus interested in dimensions between *d* and $1 + \alpha$. In this paper we show that the index *d* is sharp in the following sense: Given $\alpha \in (0, 1)$ and $K \ge 1$, for any t > d there exist (i) a compact set *E* of dimension *t* and (ii) a function $f \in \text{Lip}_{\alpha}(\mathbb{C})$

Received March 1, 2006. Revision received September 13, 2006.

The author was supported by projects MTM2004-00519, HF2004-0208, and 2005-SGR-00774.