On the Maximum Principle and a Notion of Plurisubharmonicity for Abstract CR Manifolds

S. BERHANU & C. WANG

0. Introduction

Let \mathcal{M} be a smooth manifold and let \mathcal{V} be a subbundle of $\mathbb{C}T\mathcal{M}$, the complexified tangent bundle of \mathcal{M} . The pair $(\mathcal{M}, \mathcal{V})$ is called an *abstract CR manifold* if \mathcal{V} is involutive and if, for each $p \in \mathcal{M}$, $\mathcal{V}_p \cap \bar{\mathcal{V}}_p = \{0\}$. Recall that \mathcal{V} is involutive if the space of smooth sections of \mathcal{V} , $C^\infty(\mathcal{M}, \mathcal{V})$, is closed under commutators. Let n be the complex dimension of the fibre \mathcal{V}_p of \mathcal{V} at p and write $\dim_{\mathbb{R}} \mathcal{M} = n + m$. The number n is called the CR dimension of \mathcal{M} , and d = m - n will be called the CR codimension of \mathcal{M} . If d = 1, the CR structure is said to be of hypersurface type. The CR manifold $(\mathcal{M}, \mathcal{V})$ is called *integrable* or *locally embeddable* if, for any $p_o \in \mathcal{M}$, there exist m complex-valued C^∞ functions $\mathcal{Z}_1, \ldots, \mathcal{Z}_m$ defined near p_o such that (a) $L\mathcal{Z}_j = 0$ for all $L \in C^\infty(\mathcal{M}, \mathcal{V})$, $j = 1, \ldots, m$, and (b) the differentials $d\mathcal{Z}_1, \ldots, d\mathcal{Z}_m$ are \mathbb{C} -linearly independent. Any such set of functions \mathcal{Z}_j will be called a *complete set of first integrals*.

If $(\mathcal{M}, \mathcal{V})$ is an integrable CR manifold, then the mapping $p \mapsto \mathcal{Z}(p) = (\mathcal{Z}_1(p), \ldots, \mathcal{Z}_m(p)) \in \mathbb{C}^m$, where the \mathcal{Z}_j are a complete set of first integrals, is a map of constant rank near p_o and so is an immersion. Thus, if U is a small neighborhood of p_o , then $\mathcal{Z}(U)$ is an embedded real submanifold of \mathbb{C}^m of dimension m+n, and its real codimension in \mathbb{C}^m agrees with the CR codimension d=m-n. It is easy to see that $\mathcal{Z}(U)$ is a generic CR submanifold of \mathbb{C}^m and that its CR bundle agrees with the push-forward $\mathcal{Z}_*\mathcal{V}$. Conversely, if \mathcal{M} is a CR submanifold of \mathbb{C}^m and \mathcal{V} is its CR bundle, then $(\mathcal{M}, \mathcal{V})$ defines an integrable CR structure (see [BER] and [J] for more details).

In an abstract CR manifold $(\mathcal{M}, \mathcal{V})$, a smooth section of \mathcal{V} is called a *CR vector field*. A function f on \mathcal{M} is called a *CR function* if Lf = 0 for any CR vector field L. The maximum principle for the modulus of CR functions when $(\mathcal{M}, \mathcal{V})$ is embeddable has been studied by several authors (see e.g. [Ba; Ber; EHS; Io; Ro; Si]). To our knowledge, very little seems to be known when $(\mathcal{M}, \mathcal{V})$ is not necessarily embeddable. The authors of [HNa] have proved a weak maximum principle for almost complex manifolds under some assumptions on the Levi form and minimality of the manifold (see [BER, p. 20]). When $(\mathcal{M}, \mathcal{V})$ is locally embeddable, it