Extremal Discs and Analytic Continuation of Product CR Maps

A. Scalari \& A. Tumanov

Introduction

One of the essentially multidimensional phenomena in complex analysis is the forced analytic continuation of a germ of a biholomorphic map $M_{1} \rightarrow M_{2}$ between real analytic manifolds M_{1} and M_{2} in $\mathbf{C}^{n}, n>1$. Poincaré (1907) observed that a biholomorphic map sending an open piece of the unit sphere in \mathbf{C}^{2} to another such open piece must be an automorphism of the unit ball. This was proved for \mathbf{C}^{n} by Tanaka (1962) and then rediscovered by Alexander [A].

Pinchuk [P] proved that, if M_{1} and M_{2} are strictly pseudoconvex real analytic nonspherical hypersurfaces and M_{2} is compact, then a germ of a biholomorphic map $M_{1} \rightarrow M_{2}$ holomorphically extends along any path in M_{1}. Ezhov, Kruzhilin, and Vitushkin [EKV] gave a different proof of that result. Webster [W] proved that a germ of a biholomorphic map $M_{1} \rightarrow M_{2}$ between real algebraic Levi nondegenerate hypersurfaces in \mathbf{C}^{n} is algebraic.

There is an impressive number of publications in which M_{1} and M_{2} are real algebraic manifolds of different dimensions or higher codimension, in particular real quadratic manifolds (see [BER]). Hill and Shafikov [HS] proved the analytic continuation result in higher codimension where only one of the manifolds M_{1} and M_{2} is assumed to be algebraic. There are many more results on the problem that we omit here (see e.g. [BER; HS] for references).

Despite the large amount of work done on the problem, there seem to be no results in the literature where M_{1} and M_{2} are manifolds of higher codimension in \mathbf{C}^{n} and neither of them is algebraic. In this paper we consider the case in which M_{1} is a real analytic strictly pseudoconvex manifold and M_{2} is the Cartesian product of several compact strictly convex real analytic hypersurfaces. In particular, we give another proof of Pinchuk's [P] result for the case where M_{2} is strictly convex and neither of the M_{j} is assumed to be nonspherical.

For the case in which M_{2} is the product of two spheres, the result was obtained earlier by the first author [Sc]. In this paper we significantly simplify and generalize the proof given in [Sc]. Following [Sc], we use a new method based on extremal discs in higher codimension. As by-products, we obtain some properties of extremal discs that may be useful elsewhere.

[^0]
[^0]: Received August 23, 2005. Revision received June 28, 2006.

