Periodicities in Linear Fractional Recurrences: Degree Growth of Birational Surface Maps

Eric Bedford \& Kyounghee Kim

0. Introduction

Given complex numbers $\alpha_{0}, \ldots, \alpha_{p}$ and $\beta_{0}, \ldots, \beta_{p}$, we consider the recurrence relation

$$
\begin{equation*}
x_{n+p+1}=\frac{\alpha_{0}+\alpha_{1} x_{n+1}+\cdots+\alpha_{p} x_{n+p}}{\beta_{0}+\beta_{1} x_{n+1}+\cdots+\beta_{p} x_{n+p}} . \tag{0.1}
\end{equation*}
$$

Thus a p-tuple $\left(x_{1}, \ldots, x_{p}\right)$ generates an infinite sequence $\left(x_{n}\right)$. We consider two equivalent reformulations in terms of rational mappings: we may consider the mapping $f: \mathbf{C}^{p} \rightarrow \mathbf{C}^{p}$ given by

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{p}\right)=\left(x_{2}, \ldots, x_{p}, \frac{\alpha_{0}+\alpha_{1} x_{1}+\cdots+\alpha_{p} x_{p}}{\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{p} x_{p}}\right) \tag{0.2}
\end{equation*}
$$

or we may use the imbedding $\left(x_{1}, \ldots, x_{p}\right) \mapsto\left[1: x_{1}: \cdots: x_{p}\right] \in \mathbf{P}^{p}$ into projective space and consider the induced map $f: \mathbf{P}^{p} \rightarrow \mathbf{P}^{p}$ given by

$$
\begin{equation*}
f_{\alpha, \beta}\left[x_{0}: x_{1}: \cdots: x_{p}\right]=\left[x_{0} \beta \cdot x: x_{2} \beta \cdot x: \cdots: x_{p} \beta \cdot x: x_{0} \alpha \cdot x\right], \tag{0.3}
\end{equation*}
$$

where $\alpha \cdot x=\alpha_{0} x_{0}+\cdots+\alpha_{p} x_{p}$.
Here we will study the degree growth of the iterates $f^{k}=f \circ \cdots \circ f$ of f. In particular, we are interested in the quantity

$$
\delta(\alpha, \beta):=\lim _{k \rightarrow \infty}\left(\operatorname{degree}\left(f_{\alpha, \beta}^{k}\right)\right)^{1 / k}
$$

A natural question is: For what values of α and β can (0.1) generate a periodic recurrence? In other words, when does (0.1) generate a periodic sequence $\left(x_{n}\right)$ for all choices of x_{1}, \ldots, x_{p} ? This is equivalent to asking when there is an N such that $f_{\alpha, \beta}^{N}$ is the identity map. Periodicities in recurrences of the form (0.1) have been studied in [CLa; GrL; KoL; KGo; Ly]. The question of determining the parameter values α and β for which $f_{\alpha, \beta}$ is periodic has been known for some time and is posed explicitly in [GKP] and [GrL, p. 161]. Recent progress in this direction has been obtained in [CLa]. The connection with our work here is that, if $\delta(\alpha, \beta)>$ 1 , then the degrees of the iterates of $f_{\alpha, \beta}$ grow exponentially and $f_{\alpha, \beta}$ is far from periodic.

In the case $p=1, f$ is a linear (fractional) map of \mathbf{P}^{1}. The question of periodicity for f is equivalent to determining when a 2×2 matrix is a root of the identity.

[^0]
[^0]: Received July 21, 2005. Revision received August 23, 2006.
 The first author was supported in part by the NSF.

