Polynomial Convexity and Rossi's Local Maximum Principle

Jean-Pierre Rosay

Polynomial convexity is an old and fundamental topic in the theory of complex variables. If K is a compact set in \mathbb{C}^{n} then its polynomial hull, denoted by \hat{K}, is the set of $z \in \mathbb{C}^{n}$ such that $|P(z)| \leq \operatorname{Sup}_{K}|P|$ for every (holomorphic) polynomial P. If $\hat{K}=K$ then K is said to be polynomially convex. It is my opinion that some very basic questions are still worth revisiting. I illustrate this with two examples.

In Part A, I discuss Rossi's local maximum principle. I noticed only recently that this principle becomes a totally trivial exercise if the hull is characterized in terms of plurisubharmonic functions. Rossi's principle then generalizes to almost complex manifolds.

In Part B, which is far less successful, I discuss the old result of polynomial convexity of (smooth enough) arcs. It is a deep result-still with no easy proof-and with an unsatisfactory conclusion, as will be explained later. I would like to see the polynomial convexity of arcs established by some kind of construction similar to the one in Part A (with the soft tool of plurisubharmonic functions). Part B is still far from that goal, but I hope the proof presented there is somewhat more pleasant than previous proofs. Some of its ingredients may be useful.

Part A

1. Introduction

Rossi's maximum principle [15] is an important result in complex analysis. One version reads as follows.

Theorem. Let K be a compact set in \mathbb{C}^{n}, and let \hat{K} be its polynomial hull. Let $z \in \hat{K} \backslash K$, and let V be a relatively compact neighborhood of z that does not intersect K. Then, for every polynomial $P,|P(z)| \leq \operatorname{Sup}_{\hat{K} \cap b V}|P|$ (where bV denotes the boundary of V).

Thus, although the polynomial hull may not carry any analytic structure $[16 ; 3$, Chap. 24], still the maximum principle holds along \hat{K}. Following Rossi's original proof [15], proofs such as those for [3, Thm. 9.3] and [8, Thm. 3.2.11] rely on solving $\bar{\partial}$.

[^0]
[^0]: Received February 23, 2005. Revision received September 23, 2005. Partly supported by an NSF grant.

