Tight Closure Test Exponents for Certain Parameter Ideals

RODNEY Y. SHARP

0. Introduction

Throughout the paper, *R* will denote a commutative Noetherian ring of prime characteristic *p*. We shall always denote by $f: R \to R$ the Frobenius homomorphism, for which $f(r) = r^p$ for all $r \in R$. Let \mathfrak{a} be an ideal of *R*. The *n*th *Frobenius power* $\mathfrak{a}^{[p^n]}$ of \mathfrak{a} is the ideal of *R* generated by all p^n th powers of elements of \mathfrak{a} .

We use R° to denote the complement in R of the union of the minimal prime ideals of R. An element $r \in R$ belongs to the *tight closure* \mathfrak{a}^* of \mathfrak{a} if and only if there exists a $c \in R^{\circ}$ such that $cr^{p^n} \in \mathfrak{a}^{\lfloor p^n \rfloor}$ for all $n \gg 0$. We say that \mathfrak{a} is *tightly closed* precisely when $\mathfrak{a}^* = \mathfrak{a}$. The theory of tight closure was invented by M. Hochster and C. Huneke [4], and many applications have been found for the theory (see [7]). For the definition of the tight closure N_M^* of a submodule N in an ambient *R*-module *M* (and explanation of the notations $N_M^{\lfloor p^n \rfloor}$ and m^{p^n} for $m \in$ *M* and a nonnegative integer *n*), the reader is referred to [4, (8.1)–(8.3)].

A p^{w_0} -weak test element for R (where w_0 is a nonnegative integer) is an element $c' \in R^\circ$ such that, for every finitely generated R-module M and every submodule N of M and for $m \in M$, we have $m \in N_M^*$ if and only if $c'm^{p^n} \in N_M^{[p^n]}$ for all $n \ge w_0$. A p^0 -weak test element is called a *test element*. A *locally stable* p^{w_0} -weak *test element* (respectively, *completely stable* p^{w_0} -weak *test element*) for R is an element $c' \in R$ such that, for every prime ideal \mathfrak{p} of R, the natural image c'/1 of c' in the localization $R_{\mathfrak{p}}$ is a p^{w_0} -weak test element for $R_{\mathfrak{p}}$ (respectively, for the completion $\widehat{R_{\mathfrak{p}}}$ of $R_{\mathfrak{p}}$). When $w_0 = 0$, we omit the adjective " p^{w_0} -weak". A locally stable p^{w_0} -weak test element for R is a p^{w_0} -weak test element for R, and a completely stable p^{w_0} -weak test element for R is a locally stable p^{w_0} -weak test element for R is a locally stable p^{w_0} -weak test element for R is a locally stable p^{w_0} -weak test element for R.

It is a result of Hochster and Huneke [5, Thm. (6.1)(b)] that an algebra of finite type over an excellent local ring of characteristic p has a completely stable p^{w_0} -weak test element for some w_0 ; furthermore, such an algebra that is also reduced actually has a completely stable test element.

This paper is concerned with the concept of a *test exponent* in tight closure theory introduced by Hochster and Huneke in [6, Def. 2.2]. Let c be a test element

Received February 1, 2005. Revision received June 2, 2005.

The author was partially supported by the Engineering and Physical Sciences Research Council of the United Kingdom.