On the Local Behavior of the Carmichael λ -Function

NICOLAS DOYON & FLORIAN LUCA

1. Introduction

Let ϕ denote the *Euler function*, which, for an integer $n \ge 1$, is defined as usual by

$$\phi(n) = #(\mathbb{Z}/n\mathbb{Z})^{\times} = \prod_{p^{\nu} \parallel n} p^{\nu-1}(p-1).$$

The *Carmichael function* λ is defined for each integer $n \ge 1$ as the largest order of any element in the multiplicative group $(\mathbb{Z}/n\mathbb{Z})^{\times}$. More explicitly, for any prime power p^{ν} we have:

$$\lambda(p^{\nu}) = \begin{cases} p^{\nu-1}(p-1) & \text{if } p \ge 3 \text{ or } \nu \le 2, \\ 2^{\nu-2} & \text{if } p = 2 \text{ and } \nu \ge 3; \end{cases}$$

and, for an arbitrary integer $n \ge 2$,

 $\lambda(n) = \operatorname{lcm}[\lambda(p_1^{\nu_1}), \dots, \lambda(p_k^{\nu_k})],$

where $n = p_1^{\nu_1} \cdots p_k^{\nu_k}$ is the prime factorization of *n*. Note that $\lambda(1) = 1$.

For a positive integer *n*, let $\Omega(n)$, $\omega(n)$, $\tau(n)$, and $\sigma(n)$ denote (respectively) the number of prime divisors of *n* with and without repetitions, the total number of divisors of *n*, and their sum. Let *f* be any one of the functions Ω , ω , τ , ϕ , or σ . It is well known that, if *t* is any positive integer and *a* is any permutation of $\{1, \ldots, t\}$, then there exist infinitely many positive integers *n* such that all inequalities f(n + a(i)) > f(n + a(i + 1)) hold for $i = 1, \ldots, t - 1$. In fact, in [3] it is shown that, if *a*, *b* are any two permutations of $\{1, \ldots, t\}$, then there exist infinitely many positive integers *n* such that all inequalities $\omega(n + a(i)) > \omega(n + a(i + 1))$ and $\tau(n + b(i)) > \tau(n + b(i + 1))$ hold for $i = 1, \ldots, t - 1$.

In this note, we prove some effective versions of this result from [3] with the pair of functions $\{\omega, \tau\}$ replaced by the pair $\{\lambda, \phi\}$.

We use the Vinogradov symbols \gg , \ll , and \asymp as well as the Landau symbols O and o with their usual meaning. We use the letters p and q for prime numbers. For a positive real number x we write $\log_1 x = \max\{1, \log x\}$, where log is the natural logarithm, and for a positive integer $k \ge 2$ we define $\log_k x = \log_1(\log_{k-1} x)$. When k = 1, we omit the subscript and thus understand that all the logarithms that will appear are ≥ 1 . We write $\pi(x)$ for the number of primes $p \le x$ and

Received December 9, 2004. Revision received May 12, 2005.