On the Local Behavior of the
 Carmichael λ-Function

Nicolas Doyon \& Florian Luca

1. Introduction

Let ϕ denote the Euler function, which, for an integer $n \geq 1$, is defined as usual by

$$
\phi(n)=\#(\mathbb{Z} / n \mathbb{Z})^{\times}=\prod_{p^{v} \| n} p^{\nu-1}(p-1) .
$$

The Carmichael function λ is defined for each integer $n \geq 1$ as the largest order of any element in the multiplicative group $(\mathbb{Z} / n \mathbb{Z})^{\times}$. More explicitly, for any prime power p^{ν} we have:

$$
\lambda\left(p^{\nu}\right)= \begin{cases}p^{v-1}(p-1) & \text { if } p \geq 3 \text { or } v \leq 2 \\ 2^{v-2} & \text { if } p=2 \text { and } v \geq 3\end{cases}
$$

and, for an arbitrary integer $n \geq 2$,

$$
\lambda(n)=\operatorname{lcm}\left[\lambda\left(p_{1}^{\nu_{1}}\right), \ldots, \lambda\left(p_{k}^{v_{k}}\right)\right]
$$

where $n=p_{1}^{\nu_{1}} \cdots p_{k}^{\nu_{k}}$ is the prime factorization of n. Note that $\lambda(1)=1$.
For a positive integer n, let $\Omega(n), \omega(n), \tau(n)$, and $\sigma(n)$ denote (respectively) the number of prime divisors of n with and without repetitions, the total number of divisors of n, and their sum. Let f be any one of the functions $\Omega, \omega, \tau, \phi$, or σ. It is well known that, if t is any positive integer and a is any permutation of $\{1, \ldots, t\}$, then there exist infinitely many positive integers n such that all inequalities $f(n+a(i))>f(n+a(i+1))$ hold for $i=1, \ldots, t-1$. In fact, in [3] it is shown that, if a, b are any two permutations of $\{1, \ldots, t\}$, then there exist infinitely many positive integers n such that all inequalities $\omega(n+a(i))>\omega(n+a(i+1))$ and $\tau(n+b(i))>\tau(n+b(i+1))$ hold for $i=1, \ldots, t-1$.

In this note, we prove some effective versions of this result from [3] with the pair of functions $\{\omega, \tau\}$ replaced by the pair $\{\lambda, \phi\}$.

We use the Vinogradov symbols \gg, \ll, and \asymp as well as the Landau symbols O and o with their usual meaning. We use the letters p and q for prime numbers. For a positive real number x we write $\log _{1} x=\max \{1, \log x\}$, where \log is the natural logarithm, and for a positive integer $k \geq 2$ we define $\log _{k} x=\log _{1}\left(\log _{k-1} x\right)$. When $k=1$, we omit the subscript and thus understand that all the logarithms that will appear are ≥ 1. We write $\pi(x)$ for the number of primes $p \leq x$ and

