Adiabatic Decomposition of the ζ -Determinant and Scattering Theory

JINSUNG PARK & KRZYSZTOF P. WOJCIECHOWSKI

1. Introduction and Statement of Results

Let $\mathcal{D}: C^{\infty}(M, S) \to C^{\infty}(M, S)$ be a compatible Dirac operator acting on sections of a Clifford bundle *S* over a closed manifold *M* of dimension *n*. The operator \mathcal{D} is a self-adjoint operator with discrete spectrum $\{\lambda_k\}_{k\in\mathbb{Z}}$. The ζ -determinant of the Dirac Laplacian \mathcal{D}^2 is given by the formula

$$\det_{\zeta} \mathcal{D}^2 = e^{-\zeta_{\mathcal{D}^2}'(0)},\tag{1.1}$$

where $\zeta_{\mathcal{D}^2}(s)$ is defined as follows:

$$\zeta_{\mathcal{D}^2}(s) = \sum_{\lambda_k \neq 0} (\lambda_k^2)^{-s} = \frac{1}{\Gamma(s)} \int_0^\infty t^{s-1} [\operatorname{Tr}(e^{-t\mathcal{D}^2}) - \dim \ker \mathcal{D}] dt.$$
(1.2)

This is a holomorphic function of *s* for $\Re(s) \gg 0$ and has the meromorphic extension to the complex plane with s = 0 as a regular point.

Let us consider a decomposition of M as $M_1 \cup M_2$, where M_1 and M_2 are compact manifolds with boundaries such that

$$M = M_1 \cup M_2, \qquad Y = M_1 \cap M_2 = \partial M_1 = \partial M_2. \tag{1.3}$$

In this paper we study the adiabatic decomposition of the ζ -determinant of \mathcal{D}^2 , which describes the contributions in det $\zeta \mathcal{D}^2$ coming from the submanifolds M_1 and M_2 . Throughout the paper, we assume that the manifold M and the operator \mathcal{D} have product structures in a neighborhood of the cutting hypersurface Y. Hence, there is a bicollar neighborhood $N \cong [-1, 1]_u \times Y$ of $Y \cong \{0\} \times Y$ in M such that the Riemannian structure on M and the Hermitian structure on S are products of the corresponding structures over $[-1, 1]_u$ and Y when restricted to N, so that \mathcal{D} has the following form:

$$\mathcal{D} = G(\partial_u + B) \text{ over } N. \tag{1.4}$$

Here *u* denotes the normal variable, $G: S|_Y \to S|_Y$ is a bundle automorphism, and *B* is a corresponding Dirac operator on *Y*. Moreover, *G* and *B* do not depend on *u*, and they satisfy

$$G^* = -G, \quad G^2 = -\mathrm{Id}, \quad B = B^*, \quad GB = -BG.$$
 (1.5)

Received November 23, 2004. Revision received October 5, 2005.