The Multipole Lempert Function Is Monotone under Inclusion of Pole Sets

NIKOLAI NIKOLOV & PETER PFLUG

Let D be a domain in \mathbb{C}^n and let $A=(a_j)_{j=1}^l, 1\leq l\leq \infty$, be a countable (i.e. $l=\infty$) or nonempty finite (i.e. $l\in\mathbb{N}$) subset of D. Moreover, fix a function $p\colon D\to\mathbb{R}_+$ with

$$|p| := \{a \in D : p(a) > 0\} = A;$$

p is called a *pole function for A* on *D* and |p| its *pole set*. When $B \subset A$ is a nonempty subset we put $p_B := p$ on *B* and $p_B := 0$ on $D \setminus B$. Then p_B is a pole function for *B*.

For $z \in D$ we set

$$l_D(\mathbf{p}, z) = \inf \left\{ \prod_{j=1}^l |\lambda_j|^{\mathbf{p}(a_j)} \right\},\,$$

where the infimum is taken over all subsets $(\lambda_j)_{j=1}^l$ of \mathbb{D} (in this paper, \mathbb{D} is the open unit disc in \mathbb{C}) for which there is an analytic disc $\varphi \in \mathcal{O}(\mathbb{D}, D)$ with $\varphi(0) = z$ and $\varphi(\lambda_j) = a_j$ for all j. Here we call $l_D(\boldsymbol{p}, \cdot)$ the Lempert function with \boldsymbol{p} -weighted poles at A ([8; 9]; see also [5], where this function is called the Coman function for \boldsymbol{p}).

Wikström [8] has proved that, if A and B are finite subsets of a convex domain $D \subset \mathbb{C}^n$ with $\emptyset \neq B \subset A$ and if p is a pole function for A, then $l_D(p, \cdot) \leq l_D(p_B, \cdot)$ on D.

On the other hand, in [9] Wikström gave an example of a complex space for which this inequality fails to hold, and he asked whether it remains true for an arbitrary domain in \mathbb{C}^n . The main purpose of this note is to present a positive answer to that question, even for countable pole sets. (In particular, it follows that the infimum in the definition of the Lempert function is always taken over a nonempty set.)

THEOREM 1. For any domain $D \subset \mathbb{C}^n$, any countable or nonempty finite subset A of D, and any pole function p for A, we have

$$l_D(\mathbf{p},\cdot) = \inf\{l_D(\mathbf{p}_B,\cdot) : \emptyset \neq B \text{ a finite subset of } A\}.$$

Therefore,

$$l_D(\mathbf{p},\cdot) = \inf\{l_D(\mathbf{p}_B,\cdot) : \emptyset \neq B \subset A\}.$$

The proof of this result will be based on the following theorem.

Received October 18, 2004. Revision received December 21, 2004.