The Multipole Lempert Function Is Monotone under Inclusion of Pole Sets

Nikolai Nikolov \& Peter Pflug

Let D be a domain in \mathbb{C}^{n} and let $A=\left(a_{j}\right)_{j=1}^{l}, 1 \leq l \leq \infty$, be a countable (i.e. $l=\infty$) or nonempty finite (i.e. $l \in \mathbb{N}$) subset of D. Moreover, fix a function $\boldsymbol{p}: D \rightarrow \mathbb{R}_{+}$with

$$
|\boldsymbol{p}|:=\{a \in D: \boldsymbol{p}(a)>0\}=A ;
$$

\boldsymbol{p} is called a pole function for A on D and $|\boldsymbol{p}|$ its pole set. When $B \subset A$ is a nonempty subset we put $\boldsymbol{p}_{B}:=\boldsymbol{p}$ on B and $\boldsymbol{p}_{B}:=0$ on $D \backslash B$. Then \boldsymbol{p}_{B} is a pole function for B.

For $z \in D$ we set

$$
l_{D}(\boldsymbol{p}, z)=\inf \left\{\prod_{j=1}^{l}\left|\lambda_{j}\right|^{\boldsymbol{p}\left(a_{j}\right)}\right\},
$$

where the infimum is taken over all subsets $\left(\lambda_{j}\right)_{j=1}^{l}$ of \mathbb{D} (in this paper, \mathbb{D} is the open unit disc in \mathbb{C}) for which there is an analytic disc $\varphi \in \mathcal{O}(\mathbb{D}, D)$ with $\varphi(0)=z$ and $\varphi\left(\lambda_{j}\right)=a_{j}$ for all j. Here we call $l_{D}(\boldsymbol{p}, \cdot)$ the Lempert function with \boldsymbol{p}-weighted poles at A ([8;9]; see also [5], where this function is called the Coman function for \boldsymbol{p}).

Wikström [8] has proved that, if A and B are finite subsets of a convex domain $D \subset \mathbb{C}^{n}$ with $\emptyset \neq B \subset A$ and if \boldsymbol{p} is a pole function for A, then $l_{D}(\boldsymbol{p}, \cdot) \leq l_{D}\left(\boldsymbol{p}_{B}, \cdot\right)$ on D.

On the other hand, in [9] Wikström gave an example of a complex space for which this inequality fails to hold, and he asked whether it remains true for an arbitrary domain in \mathbb{C}^{n}. The main purpose of this note is to present a positive answer to that question, even for countable pole sets. (In particular, it follows that the infimum in the definition of the Lempert function is always taken over a nonempty set.)

Theorem 1. For any domain $D \subset \mathbb{C}^{n}$, any countable or nonempty finite subset A of D, and any pole function \boldsymbol{p} for A, we have

$$
l_{D}(\boldsymbol{p}, \cdot)=\inf \left\{l_{D}\left(\boldsymbol{p}_{B}, \cdot\right): \emptyset \neq B \text { a finite subset of } A\right\} .
$$

Therefore,

$$
l_{D}(\boldsymbol{p}, \cdot)=\inf \left\{l_{D}\left(\boldsymbol{p}_{B}, \cdot\right): \emptyset \neq B \subset A\right\} .
$$

The proof of this result will be based on the following theorem.

[^0]
[^0]: Received October 18, 2004. Revision received December 21, 2004.

