Complexes of Nonseparating Curves and Mapping Class Groups

ELMAS IRMAK

1. Introduction

Let R be a compact, connected, orientable surface of genus g with p boundary components. The mapping class group Mod_R of R is the group of isotopy classes of orientation-preserving homeomorphisms of R. The extended mapping class group Mod_R^* of R is the group of isotopy classes of all (including orientation-reversing) homeomorphisms of R. Let A denote the set of isotopy classes of nontrivial simple closed curves on R. The *complex of curves* C(R) on R is an abstract simplicial complex, introduced by Harvey [H], with vertex set A such that a set of n vertices $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ forms an (n-1)-simplex if and only if $\alpha_1, \alpha_2, \ldots, \alpha_n$ have pairwise disjoint representatives.

DEFINITION. A simplicial map $\lambda \colon \mathcal{C}(R) \to \mathcal{C}(R)$ is called *superinjective* if the following condition holds: If α and β are two vertices in $\mathcal{C}(R)$ such that the geometric intersection number $i(\alpha, \beta)$ of α and β is not equal to zero, then $i(\lambda(\alpha), \lambda(\beta))$ is not equal to zero.

The combinatorial structure of curve complexes on surfaces are studied in order to derive information about the algebraic structure of the mapping class groups. In [Iv1], Ivanov proved that if $g \ge 2$ then every automorphism of $\mathcal{C}(R)$ is induced by a homeomorphism of R. He proved that $\operatorname{Aut}(\mathcal{C}(R)) \cong \operatorname{Mod}_R^*$ for most surfaces, and as an application he gave a complete description of isomorphisms between finite index subgroups of Mod_R^* . Ivanov proved that every such isomorphism is induced by a homeomorphism of R; that is, it is of the form $k \to hkh^{-1}$ for some $h \in \operatorname{Mod}_R^*$ for most surfaces. These theorems were extended to most of the surfaces of genus 0 and 1 by Korkmaz in [K] and independently by Luo in [L2]. Luo gave a proof by using a multiplicative structure on the set of isotopy classes of nonseparating simple closed curves on R, a structure introduced by him in [L1].

Ivanov and McCarthy [IvM] gave a complete description of injective homomorphisms between mapping class groups of surfaces Mod_R and $\operatorname{Mod}_{R'}$ when the maxima of ranks of abelian subgroups of Mod_R and $\operatorname{Mod}_{R'}$ differ by at most 1. In particular they showed that, for most surfaces, an injective homomorphism of Mod_R to itself is of the form $k \to hkh^{-1}$ for some $h \in \operatorname{Mod}_R^*$.

Received July 12, 2004. Revision received September 28, 2005.

Supported by a Rackham Faculty Fellowship, Rackham Graduate School, University of Michigan.