On Some Lacunary Power Series

Krzysztof Barański

1. Introduction

Consider a lacunary power series given by

$$f(z) = \sum_{n=0}^{\infty} a_n z^{k_n},\tag{1}$$

where $k_{n+1}/k_n \ge b > 1$ for every $n \ge 0$ and where $a_n \in \mathbb{C}$ such that $\sum_{n=0}^{\infty} |a_n| < \infty$. Then *f* is holomorphic in the unit disc \mathbb{D} and continuous in $\overline{\mathbb{D}}$.

In 1945, Salem and Zygmund showed in [SZ] that if $b > b_0$ for a constant $b_0 \approx$ 45 and if the a_n satisfy some conditions (so that the convergence of $\sum_{n=0}^{\infty} |a_n|$ is slow enough), then the image of the unit circle under f is a Peano curve—that is, it contains an open set in the plane. In 1963, Kahane, M. Weiss, and G. Weiss in [KWW] extended the result, showing that for every b > 1 there exists a constant $\gamma > 0$ depending only on b and such that, if

$$|a_n| \le \gamma \sum_{m=n+1}^{\infty} |a_m| \tag{2}$$

for every *n*, then the image of the unit circle under *f* is a Peano curve. In fact, they proved that there exist constants K, ξ, ν (depending only on *b*) such that, if

- inequality (2) is fulfilled and
- *E* is any Cantor set in the unit circle obtained by taking an arc *I* of length at least *ξ/k*₀, removing the middle subarc of *I* of length *K* times the length of *I* and repeating the procedure inductively, always removing the middle subarc of length *K* times the length of the larger one,

then f(E) contains the disc centered at 0 of radius $\nu \sum_{n=0}^{\infty} |a_n|$.

In [CGP] it was noticed by Cantón, Granados, and Pommerenke that the Kahane– Weiss–Weiss result implies the following.

CGP THEOREM. If f is a map of the form (1) satisfying (2) and if k_0 is sufficiently large, then f does not preserve Borel sets on the unit circle.

Received July 7, 2004. Revision received September 2, 2005.

Research supported by Polish KBN Grant no. 2 P03A 034 25