Distributional Properties of the Largest Prime Factor

William D. Banks, Glyn Harman, \& Igor E. Shparlinski

1. Introduction

For every positive integer n, let $P(n)$ denote the largest prime factor of n, with the usual convention that $P(1)=1$. For an integer $q \geq 1$ and a real number z, we define $\mathbf{e}_{q}(z)=\mathbf{e}(z / q)$, where $\mathbf{e}(z)=\exp (2 \pi i z)$ as usual.

In Section 3, we consider the problem of bounding the function

$$
\varrho(x ; q, a)=\#\{n \leq x: P(n) \equiv a(\bmod q)\} .
$$

For the case of q fixed, this question has been previously considered by Ivić [11]. However, the approach in [11] apparently does not extend to the case where the modulus q is allowed to grow with the parameter x; this is mainly due to the fact that asymptotic formulas for the number of primes in arithmetic progressions are much less precise for growing moduli than those known for a fixed modulus.

We also remark that Oon [13] has studied the distribution of $P(n)$ over the congruence classes of a fixed modulus q in the case of n itself belonging to an arithmetic progression (with a growing modulus).

In this paper, we use a similar approach to that of Ivić [11] and obtain new bounds that are nontrivial for a wide range of values of the parameter q. In particular, if q is not too large relative to x, we derive the expected asymptotic formula

$$
\varrho(x ; q, a) \sim \frac{x}{\varphi(q)}
$$

with an explicit error term that is independent of a. On the other hand, we show that this estimate is no longer correct (even by an order of magnitude) for $q \geq$ $\exp (3 \sqrt{\log x \log \log x})$.

In Section 4 we study the function

$$
\varpi(x ; q, a)=\#\{p \leq x: P(p-1) \equiv a(\bmod q)\}
$$

where p varies over the set of prime numbers, and we derive the upper bound

$$
\varpi(x ; q, a) \ll \frac{\pi(x)}{\varphi(q)}
$$

provided that $\log q \leq \log ^{1 / 3} x$. Here, $\pi(x)=\#\{p \leq x\}$. We expect that the matching lower bound $\varpi(x ; q, a) \gg \pi(x) / \varphi(q)$ also holds for such q, or perhaps even

Received August 2, 2004. Revision received February 17, 2005.

