Magnus Intersections in One-Relator Products

JAMES HOWIE

1. Introduction

Recall that a group *G* is *locally indicable* if each of its nontrivial, finitely generated subgroups admits an infinite cyclic homomorphic image. A *one-relator product* of groups A_{λ} ($\lambda \in \Lambda$) is a quotient

$$G = (*_{\lambda \in \Lambda} A_{\lambda}) / \langle \langle R \rangle \rangle$$

of their free product by the normal closure of a word R, which is called the *relator*, and is assumed not to be conjugate to an element of one of the A_{λ} . Let $A_{\Lambda} := *_{\lambda \in \Lambda} A_{\lambda}$. Then, by the Freiheitssatz for locally indicable groups [3] (see Theorem 2.1 to follow), a free factor $A_M := *_{\mu \in M} A_{\mu}$ of A_{Λ} embeds in G provided that R is not conjugate in A_{Λ} to an element of A_M . The image of this embedding is called the *Magnus subgroup* corresponding to the subset $M \subset \Lambda$.

The purpose of this paper is to examine the intersection of two Magnus subgroups of a one-relator product of locally indicable groups. Suppose M and N are two subsets of Λ . Then clearly the Magnus subgroup $A_{M \cap N}$ is contained in the intersection of Magnus subgroups $A_M \cap A_N$. In almost all cases it turns out that

$$A_M \cap A_N = A_{M \cap N},$$

but it is easy to construct examples where this equation fails.

In the special case where the A_{λ} are all infinite cyclic (so that G is a one-relator group), Collins [5] has proved the following result.

THEOREM A. Let A_M and A_N be Magnus subgroups of a one-relator group $G = A_\Lambda / \langle \langle R \rangle \rangle$. Then

$$A_M \cap A_N = A_{M \cap N} * I,$$

where I is a free group of rank 0 or 1.

Both possibilities occur, but the most usual situation is that *I* has rank 0. If *I* has rank 1 then we say that A_M and A_N have *exceptional intersection*. In this case, nontrivial elements of *I* are called *exceptional elements*.

The purpose of this paper is twofold: to generalize Theorem A to the case of arbitrary locally indicable factors; and to investigate precisely under what circumstances an exceptional intersection can occur.

Received July 9, 2004. Revision received February 2, 2005.