On Fermat Curves and Maximal Nodal Curves

Mutsuo Oka

1. Introduction

Let $f(x)=a\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right), a>0$, be a real polynomial with n distinct real roots; it has $[(n-1) / 2]$ maxima and $(n-1)-[(n-1) / 2]$ minima. Thom has studied the space of real polynomials and showed, for example, that any given polynomial f can be deformed into a special polynomial that has the same maxima and minima [8]. A typical such polynomial is the Chebyshev polynomial.

A nodal curve C is an irreducible plane curve of degree n that contains only nodes ($=A_{1}$ singularities). A nodal curve is called a maximal nodal curve if it is rational and nodal; by Plücker's formula, it must contain $\frac{(n-1)(n-2)}{2}$ nodes to be maximal. In the space of polynomials of two variables, a maximal nodal curve can be understood as a generalization of a Chebyshev polynomial. In [6] the author constructed a maximal nodal curve of join type $f(x)+g(y)=0$ using a Chebyshev polynomial $f(x)$ and a similar polynomial $g(y)$ that has one maximal value and two minimal values.

In this paper we present another extremely simple way, for a given integer $n>2$, to construct a beautifully symmetric and maximal nodal curve D_{n} as a by-product of the geometry of the Fermat curve $x^{n+1}+y^{n+1}+1=0$. A smooth point P of a plane curve C is called a flex point of flex-order $k \geq 3$ if the tangent line T_{P} at P and C intersect with intersection multiplicity k. The maximal nodal curve D_{n}, which we construct in this paper, contains three flexes of flex-order n, and it is symmetric with respect to the permutation of three variables U, V, W. By a special case of Zariski [10] and Fulton [2], $\pi_{1}\left(\mathbb{P}^{2}-C\right)=\mathbb{Z} / n \mathbb{Z}$ if C is a maximal nodal curve of degree n. The examples D_{n} provide an alternate proof. Zariski [10] observed that the fundamental group of the complement of an irreducible curve C of degree n is abelian if C has a flex of flex-order either n or $n-1$. Since the moduli of maximal nodal curves of degree n is irreducible (by Harris [3]), the claim follows.

For the construction, we start from the Fermat curve $\mathcal{F}_{n}: x^{n}+y^{n}+1=0$ and study singularities of the dual curve $\check{\mathcal{F}}_{n}$. The Fermat curve and the dual curve $\check{\mathcal{F}}_{n}$ have canonical $\mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$ actions, so the defining polynomial of $\check{\mathcal{F}}_{n}$ is written as $h\left(u^{n}, v^{n}\right)=0$ for a polynomial $h(u, v)$ of degree $n-1$. The curve $h(u, v)=0$ defines our maximal nodal curve D_{n-1}. Geometrically this is the quotient of the

