C^{k}-Estimates for the $\bar{\partial}_{b}$-Equation on Convex Domains of Finite Type

William Alexandre

1. Introduction

Since the construction in [8] of a support function for convex domains of finite type, many results about the regularity of Cauchy-Riemann equations have been obtained on these domains. We should mention [7], in which a $\bar{\partial}$-solving operator for all convex domains of finite type was constructed that satisfies optimal uniform Hölder estimates. Note that this result was already obtained in [5] by using properties of the Bergman kernel. For a convex domain of finite type, Hefer [12] obtained Hölder and L^{p}-estimates depending on Catlin's multitype. In [2], a modification of the operator of [7] led to C^{k}-estimates for all $k \in \mathbb{N}$. In this work, we are interested in the regularity of tangential Cauchy-Riemann equations.

Let D be a bounded convex domain in \mathbb{C}^{n} of finite type m, with $b D$ its boundary. We denote by r a C^{∞}-defining convex function for D such that $\operatorname{grad} r(\zeta) \neq$ 0 for all ζ in a neighborhood \mathcal{V} of $b D$. We use the definition of the equivalence classes and of the $\bar{\partial}_{b}$ operator given in [13] and denote by [f] the class of a form f.

Let $C_{0, q}^{\alpha}(b D), \alpha \geq 0$, be the set of $(0, q)$-forms of regularity C^{α} in a neighborhood of $b D$ and let $\tilde{C}_{0, q}^{\alpha}(b D)$ be the set of equivalence classes $[f]$ such that $f \in$ $C_{0, q}^{\alpha}(b D)$. The tangential norm $\|[f]\|_{b D, \alpha}$ is then defined by

$$
\|[f]\|_{b D, \alpha}:=\inf \left\{\|g\|_{b D, \alpha}, g \in C_{0, q}^{\alpha}(b D),[g]=[f]\right\}
$$

Now we state our main result.
Theorem 1.1. Let D be a bounded convex domain with C^{∞}-smooth boundary of finite type m in \mathbb{C}^{n}, and let $q=1, \ldots, n-1$. Then there exist two linear operators $\left[T_{q}\right],\left[\tilde{T}_{q}\right]: \tilde{C}_{0, q}^{0}(b D) \rightarrow \tilde{C}_{0, q-1}^{0}(b D)$ such that the following statements hold.
(i) For all $k \in \mathbb{N}$ there is a constant $c_{k}>0$ such that, for all $[f] \in \tilde{C}_{0, q}^{k}(b D)$, $\left[T_{q}\right][f]$ and $\left[\tilde{T}_{q}\right][f]$ are in $\tilde{C}_{0, q-1}^{k+1 / m}(b D)$ and

$$
\left\|\left[\tilde{T}_{q}\right][f]\right\|_{b D, k+1 / m}+\left\|\left[T_{q}\right][f]\right\|_{b D, k+1 / m} \leq c_{k}\|[f]\|_{b D, k} .
$$

(ii) For all $[f] \in \tilde{C}_{0, q}(b D)$ such that $\bar{\partial}_{b}[f]$ belongs to $\tilde{C}_{0, q+1}(b D)$ and with the additional hypothesis when $q=n-1$ that $\int_{b D} f \wedge \phi=0$ for all $\bar{\partial}$-closed forms $\phi \in C_{n, 0}^{\infty}(b D)$, we have

