C^k -Estimates for the $\bar{\partial}_b$ -Equation on Convex Domains of Finite Type

WILLIAM ALEXANDRE

1. Introduction

Since the construction in [8] of a support function for convex domains of finite type, many results about the regularity of Cauchy–Riemann equations have been obtained on these domains. We should mention [7], in which a $\bar{\partial}$ -solving operator for all convex domains of finite type was constructed that satisfies optimal uniform Hölder estimates. Note that this result was already obtained in [5] by using properties of the Bergman kernel. For a convex domain of finite type, Hefer [12] obtained Hölder and L^p -estimates depending on Catlin's multitype. In [2], a modification of the operator of [7] led to C^k -estimates for all $k \in \mathbb{N}$. In this work, we are interested in the regularity of tangential Cauchy–Riemann equations.

Let *D* be a bounded convex domain in \mathbb{C}^n of finite type *m*, with *bD* its boundary. We denote by *r* a C^{∞} -defining convex function for *D* such that $\operatorname{grad} r(\zeta) \neq 0$ for all ζ in a neighborhood \mathcal{V} of *bD*. We use the definition of the equivalence classes and of the $\overline{\partial}_b$ operator given in [13] and denote by [*f*] the class of a form *f*.

Let $C_{0,q}^{\alpha}(bD)$, $\alpha \geq 0$, be the set of (0,q)-forms of regularity C^{α} in a neighborhood of bD and let $\tilde{C}_{0,q}^{\alpha}(bD)$ be the set of equivalence classes [f] such that $f \in C_{0,q}^{\alpha}(bD)$. The tangential norm $\|[f]\|_{bD,\alpha}$ is then defined by

$$\|[f]\|_{bD,\alpha} := \inf\{\|g\|_{bD,\alpha}, g \in C^{\alpha}_{0,q}(bD), [g] = [f]\}.$$

Now we state our main result.

THEOREM 1.1. Let *D* be a bounded convex domain with C^{∞} -smooth boundary of finite type *m* in \mathbb{C}^n , and let q = 1, ..., n - 1. Then there exist two linear operators $[T_q], [\tilde{T}_q]: \tilde{C}^0_{0,q}(bD) \to \tilde{C}^0_{0,q-1}(bD)$ such that the following statements hold.

(i) For all $k \in \mathbb{N}$ there is a constant $c_k > 0$ such that, for all $[f] \in \tilde{C}_{0,q}^k(bD)$, $[T_q][f]$ and $[\tilde{T}_q][f]$ are in $\tilde{C}_{0,q-1}^{k+1/m}(bD)$ and

$$\|[T_q][f]\|_{bD,k+1/m} + \|[T_q][f]\|_{bD,k+1/m} \le c_k \|[f]\|_{bD,k}.$$

(ii) For all $[f] \in \tilde{C}_{0,q}(bD)$ such that $\bar{\partial}_b[f]$ belongs to $\tilde{C}_{0,q+1}(bD)$ and with the additional hypothesis when q = n - 1 that $\int_{bD} f \wedge \phi = 0$ for all $\bar{\partial}$ -closed forms $\phi \in C_{n,0}^{\infty}(bD)$, we have

Received April 2, 2004. Revision received February 22, 2005.