A Note on Mappings of Finite Distortion: The Sharp Modulus of Continuity

Jani Onninen \& Xiao Zhong

1. Introduction

We consider Sobolev mappings $f \in W_{\text {loc }}^{1,1}\left(\Omega, \mathbb{R}^{n}\right)$, where Ω is a connected, open subset of \mathbb{R}^{n} and $n \geq 2$. Thus, for almost every $x \in \Omega$, we can speak of the linear transform $D f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, called the differential of f at the point x. The Jacobian determinant $J(x, f)$ is the determinant of the matrix $D f(x): J(x, f)=$ $\operatorname{det} D f(x)$. We say that a mapping $f: \Omega \rightarrow \mathbb{R}^{n}$ has finite distortion if the following three conditions are satisfied:
(i) $f \in W_{\text {loc }}^{1,1}\left(\Omega, \mathbb{R}^{n}\right)$;
(ii) the Jacobian determinant $J(x, f)$ of f is locally integrable; and
(iii) there is a measurable function $K_{O}=K_{O}(x) \geq 1$, finite almost everywhere, such that f satisfies the distortion inequality

$$
\begin{equation*}
|D f(x)|^{n} \leq K_{O}(x) J(x, f) \quad \text { a.e. } x \in \Omega . \tag{1}
\end{equation*}
$$

Here we have used the operator norm of the differential matrix, defined by

$$
|D f(x)|=\sup \{|D f(x) h|:|h|=1\} .
$$

We arrive at the usual definition of a mapping of bounded distortion, also called a quasiregular mapping, when we additionally require that $K_{O} \in L^{\infty}(\Omega)$. This class of mappings can be traced back to the work of Reshetnyak [12]. Mappings of bounded distortion are a natural generalization of analytic functions to higher dimensions. Undoubtedly, the theory of conformal mappings, or more generally of analytic functions, has also expanded in many other different directions.

In [12] Reshetnyak studied the continuity of mappings of bounded distortion. He proved that they are locally Hölder continuous with the exponent $1 / K$, where K is the L^{∞}-norm of K_{O}. Here and in what follows, continuity for a Sobolev function f means that f can be modified in a set of Lebesgue measure zero to be continuous. For each constant $K \geq 1$, the radial stretching mapping

$$
f(x)=x|x|^{1 / K-1}
$$

[^0]
[^0]: Received March 23, 2004. Revision received February 23, 2005.
 Xiao Zhong was partially supported by the Academy of Finland, project 207288, and Onninen by the National Science Foundation grant DMS-0400611. Both authors thank the 989th AMS meeting in Boulder, Colorado (2003) for bringing us together and for giving a nice environment to write this note.

