Isospectral Metrics and Potentials on Classical Compact Simple Lie Groups

Emily Proctor

1. Introduction

Given a compact Riemannian manifold (M, g), the eigenvalues of the Laplace operator Δ form a discrete sequence known as the spectrum of (M, g). (In the case of M with boundary, we stipulate either Dirichlet or Neumann boundary conditions.) We say that two Riemannian manifolds are isospectral if they have the same spectrum. For a fixed manifold M, an isospectral deformation of a metric g_{0} on M is a continuous family \mathcal{F} of metrics on M containing g_{0} such that each metric $g \in \mathcal{F}$ is isospectral to g_{0}. We say that the deformation is nontrivial if none of the other metrics in \mathcal{F} are isometric to g_{0} and that the deformation is multidimensional if \mathcal{F} can be parameterized by more than one variable. For two functions $\phi, \psi \in C^{\infty}(M)$, we say that ϕ and ψ are isospectral potentials on (M, g) if the eigenvalue spectra of the Schrödinger operators $\hbar^{2} \Delta+\phi$ and $\hbar^{2} \Delta+\psi$ are equal for any choice of Planck's constant \hbar.

In this paper, we prove the existence of multiparameter isospectral deformations of metrics on $\operatorname{SO}(n)(n=9$ or $n \geq 11), \mathrm{SU}(n)(n \geq 8)$, and $\operatorname{Sp}(n)(n \geq 4)$. For these examples we follow a metric construction developed by Schueth, who had given one-parameter families of isospectral metrics on orthogonal and unitary groups. Our multiparameter families are obtained by a new proof of nontriviality that establishes a generic condition for nonisometry of metrics arising from the construction. We also show the existence of noncongruent pairs of isospectral potentials and nonisometric pairs of isospectral conformally equivalent metrics on $\operatorname{Sp}(n)$ for $n \geq 6$.

The industry of producing isospectral manifolds began in 1964 with Milnor's pair of 16 -dimensional isospectral, nonisometric tori [M]. Several years later, in the early 1980s, new examples began to appear sporadically (e.g. [GW1; I; V]). These isospectral constructions were ad hoc and did not appear to be related until 1985, when Sunada began developing the first unified approach for producing isospectral manifolds. The method described a program for taking quotients of a given manifold so that the resulting manifolds were isospectral. Sunada's original theorem and subsequent generalizations [Be1; Be2; DG; P; Su] explained most of the previously known isospectral examples and led to a wide variety of new ones; see, for example, [BGG], [Bu], and [GWW].

[^0]
[^0]: Received February 20, 2004. Revision received August 9, 2004. Research partially supported by NSF Grant no. DMS 0072534.

