Linearity of Sets of Strange Functions

FRÉDÉRIC BAYART

1. Introduction

In analysis, sometimes very strange phenomena appear. For instance, one should mention continuous nowhere differentiable functions, everywhere divergent Fourier series of functions in $L^1(\mathbb{T})$, or universal Taylor series. By experience, it is known that as soon as such a pathological example is exhibited, it is most often generic in the sense of Baire's categories. Namely, in a well-chosen topological space, all elements of a dense G_δ set share this pathological behavior.

More recently, the algebraic structure of these sets has been investigated (see e.g. [Ro] or [AGM]). Let us recall the following definition (introduced in [GuQ]).

DEFINITION 1. A set M in a linear topological space X is said to be *spaceable* if $M \cup \{0\}$ contains a closed infinite-dimensional subspace of X.

In this paper, we give several examples of sets of functions with irregular behavior that are spaceable. Our main tool is the use of basic sequences, a technique initiated in this context by Bernal-Gonzalez and Montes-Rodriguez [BeMo; Mo] in the particular case of hypercyclic vectors. We recall some basic definitions and results, which are taken from [Di]. A sequence $(x_n)_{n\geq 1}$ of a Banach space X is called a *basic sequence* if, for each x belonging to $X_0 = \overline{\text{span}}(x_n : n \geq 1)$, there exists a unique sequence of scalars (α_n) such that $x = \sum_{n=1}^{+\infty} \alpha_n x_n$. The coefficient functionals are defined by $x_k^* \left(\sum_{n=1}^{+\infty} \alpha_n x_n \right) = \alpha_k$. They are continuous on X_0 and can be extended to X by the Hahn–Banach theorem. Two basic sequences (x_n) and (y_n) are *equivalent* if the convergence of $\sum \alpha_n x_n$ is equivalent to the convergence of $\sum \alpha_n y_n$. We will intensively use the following result (see [Di, Thm. 9]).

LEMMA 1. Let (x_n) be a basic sequence in X, and let (y_n) be a sequence in X satisfying $\sum ||x_n^*|| ||x_n - y_n|| < 1$. Then (y_n) is a basic sequence equivalent to (x_n) .

This lemma explains our strategy for building large subspaces of functions with strange behavior. First, we exhibit in the space a basic sequence of functions with a very regular behavior. Next, we slightly disturb these functions, so that the new functions behave very irregularly, yet with the new sequence remaining a basic sequence. Finally, we show that a good choice of the perturbations ensures that the irregular behavior transfers to the subspace generated by the basic sequence. This