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Linearity of Sets of Strange Functions
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1. Introduction

In analysis, sometimes very strange phenomena appear. For instance, one should
mention continuous nowhere differentiable functions, everywhere divergent Fou-
rier series of functions in L1(T), or universal Taylor series. By experience, it is
known that as soon as such a pathological example is exhibited, it is most often
generic in the sense of Baire’s categories. Namely, in a well-chosen topological
space, all elements of a dense Gδ set share this pathological behavior.

More recently, the algebraic structure of these sets has been investigated (see
e.g. [Ro] or [AGM]). Let us recall the following definition (introduced in [GuQ]).

Definition 1. A set M in a linear topological space X is said to be spaceable if
M ∪ {0} contains a closed infinite-dimensional subspace of X.

In this paper, we give several examples of sets of functions with irregular behavior
that are spaceable. Our main tool is the use of basic sequences, a technique ini-
tiated in this context by Bernal-Gonzalez and Montes-Rodriguez [BeMo; Mo] in
the particular case of hypercyclic vectors. We recall some basic definitions and re-
sults, which are taken from [Di]. A sequence (xn)n≥1 of a Banach spaceX is called
a basic sequence if, for each x belonging to X0 = span(xn : n ≥ 1), there exists a
unique sequence of scalars (αn) such that x = ∑+∞

n=1 αnxn. The coefficient func-
tionals are defined by x∗

k

(∑+∞
n=1 αnxn

) = αk. They are continuous on X0 and can
be extended to X by the Hahn–Banach theorem. Two basic sequences (xn) and
(yn) are equivalent if the convergence of

∑
αnxn is equivalent to the convergence

of
∑

αnyn. We will intensively use the following result (see [Di, Thm. 9]).

Lemma 1. Let (xn) be a basic sequence inX, and let (yn) be a sequence inX sat-
isfying

∑‖x∗
n‖‖xn − yn‖ < 1. Then (yn) is a basic sequence equivalent to (xn).

This lemma explains our strategy for building large subspaces of functions with
strange behavior. First, we exhibit in the space a basic sequence of functions with
a very regular behavior. Next, we slightly disturb these functions, so that the new
functions behave very irregularly, yet with the new sequence remaining a basic se-
quence. Finally, we show that a good choice of the perturbations ensures that the
irregular behavior transfers to the subspace generated by the basic sequence. This
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