Initial Algebras of Determinantal Rings, Cohen–Macaulay and Ulrich Ideals

WINFRIED BRUNS, TIM RÖMER, & ATTILA WIEBE

1. Introduction

Let *K* be a field and *X* an $m \times n$ matrix of indeterminates over *K*. Let K[X] denote the polynomial ring generated by all the indeterminates X_{ij} . For a given positive integer $r \leq \min\{m, n\}$, we consider the determinantal ideal $I_{r+1} = I_{r+1}(X)$ generated by all r + 1 minors of *X* if $r < \min\{m, n\}$ and $I_{r+1} = (0)$ otherwise. Let $R_{r+1} = R_{r+1}(X)$ be the determinantal ring $K[X]/I_{r+1}$.

Determinantal ideals and rings are well-known objects, and the study of these objects has many connections with algebraic geometry, invariant theory, representation theory, and combinatorics. See Bruns and Vetter [BrV] for a detailed discussion.

In the first part of this paper we develop an approach to determinantal rings via initial algebras. We cannot prove new structural results on the rings R_{r+1} in this way, but the combinatorial arguments involved are extremely simple. They yield quickly that R_{r+1} , with respect to its classical generic point, has a normal semigroup algebra as its initial algebra. Using general results about toric deformations and the properties of normal semigroup rings, one obtains immediately that R_{r+1} is normal and Cohen–Macaulay, has rational singularities in characteristic 0, and is *F*-rational in characteristic *p*.

Toric deformations of determinantal rings have been constructed by Sturmfels [St] for the coordinate rings of Grassmannians (via initial algebras) and by Gonciulea and Lakshmibai [GoL] for the class of rings considered by us. The advantage of our approach, compared to that of [GoL], is its simplicity.

Moreover, it allows us to determine the Cohen–Macaulay and Ulrich ideals of R_{r+1} . Suppose that $1 \le r < \min\{m, n\}$ and let \mathfrak{p} (resp., \mathfrak{q}) be the ideal of R_{r+1} generated by the *r*-minors of the first *r* rows (resp. the first *r* columns) of the matrix *X*. The ideals \mathfrak{p} and \mathfrak{q} are prime ideals of height 1 and hence they are divisorial, because R_{r+1} is a normal domain. The divisor class group $Cl(R_{r+1})$ is isomorphic to \mathbb{Z} and is generated by the class $[\mathfrak{p}] = -[\mathfrak{q}]$ (see [BrH, Sec. 7.3; BrV, Sec. 8]). The symbolic powers of \mathfrak{p} and \mathfrak{q} coincide with the ordinary ones. Therefore, the ideals \mathfrak{p}^k and \mathfrak{q}^k represent all reflexive rank-1 modules. The goal of Section 4 is to show that \mathfrak{p}^k (resp., \mathfrak{q}^k) is a Cohen–Macaulay ideal if and only if $k \le m - r$ (resp., $k \le n - r$). In addition, we prove that the powers \mathfrak{p}^{m-r} and \mathfrak{q}^{n-r} are even Ulrich ideals.

Received August 6, 2003. Revision received February 3, 2004.