\mathbf{C}_{+}-Actions on Contractible Threefolds

Shulim Kaliman \& Nikolai Saveliev

1. Introduction

The aim of this paper is to generalize the theorem of Miyanishi [M1] stating that, for any nontrivial algebraic \mathbf{C}_{+}-action on \mathbf{C}^{3}, the algebraic quotient $\mathbf{C}^{3} / / \mathbf{C}_{+}$is isomorphic to \mathbf{C}^{2}. Our main result is that, for a nontrivial algebraic \mathbf{C}_{+}-action on a smooth contractible affine algebraic threefold X, the algebraic quotient $X / / \mathbf{C}_{+}$is isomorphic to a smooth contractible affine surface S. Since all such surfaces are rational [GS], we deduce that X is rational as well. Furthermore, if the action is free, then we conclude that X is isomorphic to $S \times \mathbf{C}$ and that the action is induced by translation on the second factor by virtue of [K3], where this result was proved under the additional assumption that S is smooth. Another consequence of our main result is that, when X admits a dominant morphism from a threefold of form $C \times \mathbf{C}^{2}$, the quotient S is isomorphic to \mathbf{C}^{2}. We also give an independent proof of the latter fact that (unlike our main result) does not use the difficult theorem of Taubes [T] about the absence of simply connected homology cobordisms between certain homology spheres. In fact, the rationality of X can also be proved without this theorem; however, this would require another difficult theorem that all logarithmic Q-homology planes are rational [PS; GPS; GP]. In conclusion, we derive the following criterion: If there is a free algebraic \mathbf{C}_{+}-action on a smooth contractible affine algebraic threefold X that admits a dominant morphism from $C \times \mathbf{C}^{2}$, then X is isomorphic to \mathbf{C}^{3}.

2. The Main Result

Let $\rho: X \rightarrow S$ be the quotient morphism of a nontrivial algebraic \mathbf{C}_{+}-action on a smooth contractible affine algebraic threefold X. By Fujita's result, X is factorial (see e.g. [K1]). Some other properties of $\rho: X \rightarrow S$ proved in [K3, Lemma 2.1, Prop. 3.2, Rem. 3.3] are summarized in the following lemma.

Lemma 2.1.

(1) The surface S is affine and factorial, and $\rho^{-1}(s)$ is a nonempty curve for every $s \in S$.

[^0]
[^0]: Received June 15, 2003. Revision received October 13, 2003.
 The first author was partially supported by NSA Grant no. MDA904-00-1-0016. The second author was partially supported by NSF Grant no. 0196523.

