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1. Introduction and Main Results

The motivation for the results in this paper is threefold. First, in [BKR] the au-
thors observed that a number of relevant results on conformal mapping rely on
only two properties of the derivative |f ′| of a conformal map f of the unit disk
in the complex plane: the Harnack property (H) and the so-called volume growth
property (VG).

Let ρ : R
N+1
+ → (0, +∞) be a continuous function (a metric density) in the

upper half-space. We say that ρ satisfies Harnack’s property (H) with constant C
if, for each z = (a, t)∈R

N+1
+ ,

C−1 ≤ ρ(w)

ρ(q)
≤ C

whenever w, q ∈B(
z, 1

2 t
)
. (See the end of this section for notation.)

Associated to a metric density ρ in R
N+1
+ , we define the ρ-length of a curve �

in R
N+1
+ as

lengthρ(�) =
∫
�

ρ(z) |dz|
and the ρ-distance

dρ(w, q) = inf
�

lengthρ(�)

for w, q ∈R
N+1
+ , where the infimum is taken over all curves in R

N+1
+ joining w, q.

Then dρ is a distance in R
N+1
+ . If ρ(x, t) = 1/t, then dρ is the hyperbolic distance

in R
N+1
+ . We recall that the hyperbolic geodesics are exactly the vertical lines and

the circles ending orthogonally at the boundary.
If z∈R

N+1
+ and r > 0 then Bρ(z, r) denotes the open ball of center z and radius

r in the distance dρ. We say that ρ satisfies the volume growth condition (VG)
with constant C if

µρ(Bρ(z, r)) ≤ CrN+1

for all z∈R
N+1
+ and r > 0, where µρ is the volume measure associated to ρ.
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