On the Problem of Kähler Convexity in the Bergman Metric

Gregor Herbort

1. Introduction

Let $\left(M, d s^{2}\right)$ be a complete Kähler manifold of dimension n, and let $\mathcal{H}_{(2)}^{p, q}(M)$ be the space of square-integrable harmonic forms of bidegree (p, q). McNeal has studied the question: Under which reasonable conditions about the Kähler metric can one prove the vanishing of $\mathcal{H}_{(2)}^{p, q}(M)$ when $p+q \neq n$? As a sufficient condition he found that there should exist an exhausting function V for M that is at the same time a potential for $d s^{2}$ such that V dominates its gradient. We define this property as follows.

Definition. Assume that the Kähler metric $d s^{2}$ has a global potential $V \in$ $C^{2}(M)$ on M. Then we say that V dominates its gradient if there exist constants $A, B \geq 0$ such that

$$
\begin{equation*}
|\partial V|_{d s^{2}}^{2} \leq A+B V \tag{1.1}
\end{equation*}
$$

throughout M.
In [M2] such a Kähler manifold is called Kähler convex; if (1.1) holds with $B=$ 0 , it is called Kähler hyperbolic.

In complex analysis there is a case of special interest in which $M=D$ is a pseudoconvex bounded domain in \mathbb{C}^{n} that is endowed with the Bergman metric. Let $K_{D}(z)$ denote the Bergman kernel function on the diagonal of $D \times D$. Then $V_{D}=$ $\log K_{D}$ is a potential of the Bergman metric.

Donnelly and Fefferman [DoFe] proved the vanishing of $\mathcal{H}_{(2)}^{p, q}(D)$ when $p+$ $q \neq n$ and D is strongly pseudoconvex. Later, Donnelly [Do1; Do2] gave a simpler proof of this by a method that applies also to the case of finite-type pseudoconvex domains in \mathbb{C}^{2} and to certain classes of finite-type domains in \mathbb{C}^{n} with $n \geq 3$ (see e.g. [M1]). In these cases he showed using results of [C; M1] that even Kähler hyperbolicity holds. Also in [Do2] it was shown that the domain $D=\left\{z \in \mathbb{C}^{3} \mid\right.$ $\left.\left|z_{1}\right|^{2}+\left|z_{2}\right|^{10}+\left|z_{3}\right|^{10}+\left|z_{2}\right|^{2}\left|z_{3}\right|^{2}<1\right\}$ is not Kähler hyperbolic in the Bergman metric.

The purpose of this paper is to show (by means of an example) that, on a smooth bounded weakly pseudoconvex domain of finite type, the potential V_{D} in general will not dominate its gradient. We will do this using ideas from [Do2; M2]; the

