On the Problem of Kähler Convexity in the Bergman Metric

GREGOR HERBORT

1. Introduction

Let (M, ds^2) be a complete Kähler manifold of dimension n, and let $\mathcal{H}^{p,q}_{(2)}(M)$ be the space of square-integrable harmonic forms of bidegree (p,q). McNeal has studied the question: Under which reasonable conditions about the Kähler metric can one prove the vanishing of $\mathcal{H}^{p,q}_{(2)}(M)$ when $p+q\neq n$? As a sufficient condition he found that there should exist an exhausting function V for M that is at the same time a potential for ds^2 such that V dominates its gradient. We define this property as follows.

DEFINITION. Assume that the Kähler metric ds^2 has a global potential $V \in C^2(M)$ on M. Then we say that V dominates its gradient if there exist constants A, B > 0 such that

$$|\partial V|_{ds^2}^2 \le A + BV \tag{1.1}$$

throughout M.

In [M2] such a Kähler manifold is called $K\ddot{a}hler\ convex$; if (1.1) holds with B=0, it is called $K\ddot{a}hler\ hyperbolic$.

In complex analysis there is a case of special interest in which M = D is a pseudoconvex bounded domain in \mathbb{C}^n that is endowed with the Bergman metric. Let $K_D(z)$ denote the Bergman kernel function on the diagonal of $D \times D$. Then $V_D = \log K_D$ is a potential of the Bergman metric.

Donnelly and Fefferman [DoFe] proved the vanishing of $\mathcal{H}_{(2)}^{p,q}(D)$ when $p+q\neq n$ and D is strongly pseudoconvex. Later, Donnelly [Do1; Do2] gave a simpler proof of this by a method that applies also to the case of finite-type pseudoconvex domains in \mathbb{C}^2 and to certain classes of finite-type domains in \mathbb{C}^n with $n\geq 3$ (see e.g. [M1]). In these cases he showed using results of [C; M1] that even Kähler hyperbolicity holds. Also in [Do2] it was shown that the domain $D=\{z\in\mathbb{C}^3\mid |z_1|^2+|z_2|^{10}+|z_3|^{10}+|z_2|^2|z_3|^2<1\}$ is not Kähler hyperbolic in the Bergman metric.

The purpose of this paper is to show (by means of an example) that, on a smooth bounded weakly pseudoconvex domain of finite type, the potential V_D in general will not dominate its gradient. We will do this using ideas from [Do2; M2]; the