Simplicial Intersections of a Convex Set and Moduli for Spherical Minimal Immersions

GABOR TOTH

1. Introduction and Statement of Results

Let \mathcal{H} be a Euclidean vector space. Let $S_0^2(\mathcal{H})$ denote the space of symmetric endomorphisms of \mathcal{H} with vanishing trace; $S_0^2(\mathcal{H})$ is a Euclidean vector space with respect to the natural scalar product $\langle C, C' \rangle = \operatorname{trace}(CC'), C, C' \in S_0^2(\mathcal{H})$. We define the (reduced) *moduli space* [7] as

$$\mathcal{K}_0 = \mathcal{K}_0(\mathcal{H}) = \{ C \in S_0^2(\mathcal{H}) \mid C + I \ge 0 \},$$

where \geq means positive semidefinite.

We observe that K_0 is a convex body in $S_0^2(\mathcal{H})$. The interior of K_0 consists of those $C \in \mathcal{K}_0$ for which C + I > 0, and the boundary of K_0 consists of those $C \in \mathcal{K}_0$ for which C + I has nontrivial kernel. The eigenvalues of the elements in K_0 are contained in $[-1, \dim \mathcal{H} - 1]$. Hence K_0 is compact. Finally, an easy argument using $GL(\mathcal{H})$ -invariance of K_0 shows that the centroid of K_0 is the origin.

Let M be a compact Riemannian manifold and $\mathcal{H}=\mathcal{H}_{\lambda}$ the eigenspace of the Laplacian Δ^M (acting on functions of M) corresponding to an eigenvalue λ . The DoCarmo–Wallach moduli space that parameterizes spherical minimal immersions $f: M \to S_V$ of M into the unit sphere S_V of a Euclidean vector space V, for various V, is the intersection $\mathcal{K}_0 \cap \mathcal{E}_{\lambda}$, where \mathcal{E}_{λ} is a linear subspace of $S_0^2(\mathcal{H}_{\lambda})$. Here f is an isometric minimal immersion of dim M/λ times the original metric of M. (For further details, see [3; 6; 8].) Intersecting \mathcal{K}_0 further with suitable linear subspaces of \mathcal{E}_{λ} , we obtain moduli that parameterize spherical minimal immersions with additional geometric properties (such as higher-order isotropy, equivariance with respect to an acting group of isometries of M, etc.).

A result of Moore [4] states that a spherical minimal immersion $f: S^m \to S^n$ with $n \le 2m-1$ is totally geodesic; in particular, the image of f is a great m-sphere in S^n . An important example showing that the upper bound is sharp is provided by the *tetrahedral minimal immersion* $f: S^3 \to S^6$ (see [2; 6]). Here f is SU(2)-equivariant and non-totally geodesic. The name comes from the fact that the invariance group of f is the binary tetrahedral group $\mathbf{T}^* \subset S^3 = \mathrm{SU}(2)$, so that f factors through the canonical projection $S^3 \to S^3/\mathbf{T}^*$ and gives a minimal f into f into

Let $M = S^3$ and let \mathcal{H}_{λ_p} be the *p*th eigenspace of the Laplacian on S^3 corresponding to the eigenvalue $\lambda_p = p(p+2)$. According to a result in [5; 6] there