Edited 4Θ-Embeddings of Jacobians

Greg W. Anderson

1. Introduction

The point of departure for this paper is the elementary algebraic construction of Jacobians given in [A]. We begin by reviewing that construction. For brevity's sake we reformulate the construction in terms of line bundles rather than divisors. Let X be a nonsingular projective algebraic curve of genus $g>0$. Although the main work of this paper takes place over the complex numbers, for the moment we take as ground field any algebraically closed field. Fix an integer $n \geq g+2$. For $i=0, \ldots, n+1$, let $f \mapsto f^{(i)}$ denote the operation of pull-back via the i th projection $X^{\{0, \ldots, n+1\}} \rightarrow X$. Fix a line bundle \mathcal{E} on X of degree $n+g-1$. Given any line bundle \mathcal{T} on X of degree 0 , let u (resp. v) be a row vector of length n with entries forming a basis of $H^{0}\left(X, \mathcal{T}^{-1} \otimes \mathcal{E}\right)\left(\right.$ resp. $H^{0}(X, \mathcal{T} \otimes \mathcal{E})$) over the ground field, and let abel (\mathcal{T}) be the $n \times n$ matrix with entries

$$
\operatorname{abel}(\mathcal{T})_{i j}:=\left|\begin{array}{c}
\widehat{v^{(0)}} \\
\vdots \\
\widehat{v^{(i)}} \\
\vdots
\end{array}\right| \cdot\left|\begin{array}{c}
\vdots \\
\widehat{u^{(i)}} \\
\vdots \\
\widehat{u^{(n+1)}}
\end{array}\right| \cdot\left|\begin{array}{c}
\vdots \\
\widehat{v^{(j)}} \\
\vdots \\
\widehat{v^{(n+1)}}
\end{array}\right| \cdot\left|\begin{array}{c}
\widehat{u^{(0)}} \\
\vdots \\
\widehat{u^{(j)}} \\
\vdots
\end{array}\right|,
$$

where the leftmost determinant is that obtained by (i) stacking the row vectors $v^{(i)}$ to form an $(n+2) \times n$ matrix with rows numbered from 0 to $n+1$, then (ii) striking row 0 and row i to obtain a square matrix, and (iii) finally taking the determinant; the other determinants are analogously formed. Up to a nonzero scalar multiple, the matrix $\operatorname{abel}(\mathcal{T})$ is independent of the choice of bases u and v and moreover depends only on the isomorphism class of the line bundle \mathcal{T}. It is easy to see that $\operatorname{abel}(\mathcal{T})$ does not vanish identically. The construction $\mathcal{T} \mapsto \operatorname{abel}(\mathcal{T})$ maps the set of isomorphism classes of degree- 0 line bundles on X to the projective space of lines in the space of $n \times n$ matrices with entry in i th row and j th column drawn from the space

$$
H^{0}\left(X^{\{0, \ldots, n+1\}}, \frac{\bigotimes_{\ell=0}^{n+1}\left(\mathcal{E}^{(\ell)}\right)^{\otimes 4}}{\left(\mathcal{E}^{(0)}\right)^{\otimes 2} \otimes\left(\mathcal{E}^{(i)}\right)^{\otimes 2} \otimes\left(\mathcal{E}^{(j)}\right)^{\otimes 2} \otimes\left(\mathcal{E}^{(n+1)}\right)^{\otimes 2}}\right)
$$

Received January 14, 2003. Revision received April 3, 2003.

