Completions of Normal Affine Surfaces with a Trivial Makar-Limanov Invariant

Adrien Dubouloz

Introduction

For a connected normal affine surface V = Spec(A) over \mathbb{C} , the Makar-Limanov invariant of V [10] is the subalgebra $ML(V) \subset A$ of all regular functions invariant under every algebraic \mathbb{C}_+ -action on V. Constant functions are certainly contained in ML(V), and we say that the Makar-Limanov invariant of V is *trivial* (or that V is an *ML*-surface) if $ML(V) = \mathbb{C}$. In [1], Bandman and Makar-Limanov have re-discovered a link between nonsingular ML-surfaces and geometrically quasihomogeneous surfaces studied by Gizatullin in [6]-that is, surfaces whose automorphism group has a Zariski open orbit with a finite complement. More precisely, they have established that, on a nonsingular ML-surface V, there exist at least two nontrivial algebraic \mathbb{C}_+ -actions that generate a subgroup H of the automorphism group Aut(V) of V such that the orbit H.v of a general closed point $v \in V$ has finite complement. By Gizatullin [6], such a surface is rational and is either isomorphic to $\mathbb{C}^* \times \mathbb{C}^*$ or can be obtained from a nonsingular projective surface \overline{V} by deleting an ample divisor of a special form, called a *zigzag*. This is just a linear chain of nonsingular rational curves. Conversely, a nonsingular surface V completable by a zigzag is rational and geometrically quasihomogeneous (see [6]). In addition, if V is not isomorphic to $\mathbb{C}^* \times \mathbb{A}^1$ then it admits two independent \mathbb{C}_+ -actions. More precisely, Bertin [2] showed that if V admits a \mathbb{C}_+ -action then this action is unique unless V is completable by a zigzag. Altogether, this leads to the following result.

THEOREM [1; 2; 6]. A nonsingular affine surface V that is nonisomorphic to $\mathbb{C}^* \times \mathbb{A}^1$ has a trivial Makar-Limanov invariant if and only if V is completable by a zigzag.

More generally, in this paper we prove the following theorem.

THEOREM. A normal affine surface V that is nonisomorphic to $\mathbb{C}^* \times \mathbb{A}^1$ has a trivial Makar-Limanov invariant if and only if V is completable by a zigzag.

We are grateful to the referee for pointing out that closely related results are proved in two recent preprints [3; 14], under the additional assumption that V is rational.

Received December 20, 2002. Revision received March 18, 2003.