The Equivariant Cohomology Ring of Regular Varieties

MICHEL BRION & JAMES B. CARRELL

0. Introduction

Let \mathfrak{B} denote the upper triangular subgroup of $SL_2(\mathbb{C})$, \mathfrak{T} its diagonal torus and \mathfrak{U} its unipotent radical. A complex projective variety *Y* is called *regular* if it is endowed with an algebraic action of \mathfrak{B} such that the fixed-point set $Y^{\mathfrak{U}}$ is a single point. Associated to any regular \mathfrak{B} -variety *Y* is a remarkable affine curve \mathcal{Z}_Y with a \mathfrak{T} -action, which was studied in [7]. In this note, we show that the coordinate ring $\mathbb{C}[\mathcal{Z}_Y]$ is isomorphic with the equivariant cohomology ring $H^*_{\mathfrak{T}}(Y)$ with complex coefficients when *Y* is smooth or, more generally, is a \mathfrak{B} -stable subvariety of a regular smooth \mathfrak{B} -variety *X* such that the restriction map from $H^*(X)$ to $H^*(Y)$ is surjective. This isomorphism is obtained as a refinement of the localization theorem in equivariant cohomology; it applies for example to Schubert varieties in flag varieties and to the Peterson variety studied in [11]. Another application of our isomorphism is a natural algebraic formula for the equivariant push-forward.

1. Preliminaries

Let \mathfrak{B} be the group of upper triangular 2×2 complex matrices of determinant 1. Let \mathfrak{T} (resp. \mathfrak{U}) be the subgroup of \mathfrak{B} consisting of diagonal (resp. unipotent) matrices. We have isomorphisms $\lambda : \mathbb{C}^* \to \mathfrak{T}$ and $\varphi : \mathbb{C} \to \mathfrak{U}$, where

$$\lambda(t) = \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}$$
 and $\varphi(u) = \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix}$,

which together satisfy the relation

$$\lambda(t)\varphi(u)\lambda(t^{-1}) = \varphi(t^2u). \tag{1}$$

Consider the generators

$$\mathcal{V} = \dot{\varphi}(0) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 and $\mathcal{W} = \dot{\lambda}(1) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

of the Lie algebras Lie(\mathfrak{U}) and Lie(\mathfrak{T}), respectively. Then $[\mathcal{W}, \mathcal{V}] = 2\mathcal{V}$, and

$$\mathrm{Ad}(\varphi(u))\mathcal{W} = \mathcal{W} - 2u\mathcal{V} \tag{2}$$

for all $u \in \mathbb{C}$.

Received November 27, 2002. Revision received May 29, 2003.

The second author was partially supported by the Natural Sciences and Engineering Research Council of Canada.