On the Restriction Conjecture

LAURA DE CARLI & LOUKAS GRAFAKOS

1. Introduction

The restriction conjecture is a challenging open problem in Fourier analysis. Denoting by

$$\hat{f}(\zeta) = \int_{\mathbf{R}^d} f(x) e^{-2\pi i \langle x, \zeta \rangle} dx$$

the Fourier transform of a C_0^{∞} function on \mathbf{R}^d and by $\mathbf{S}^{d-1} = \{x \in \mathbf{R}^d : ||x|| = 1\}$ the unit sphere in \mathbf{R}^d , the restriction conjecture (RC henceforth) states that, for every $1 \le p < \frac{2d}{d+1}$ and $q \ge \frac{d-1}{d+1}p'$, the following inequality holds:

$$\sup_{F \in C_0^{\infty}(\mathbf{R}^d)} \frac{\|F\|_{L^q(\mathbf{S}^{d-1}, d\sigma)}}{\|F\|_{L^p(\mathbf{R}^d)}} \le C,$$
(1.1)

where $d\sigma(\zeta)$ denotes surface measure on \mathbf{S}^{d-1} and $\mathbf{R}^+ = (0, \infty)$. Here *C* is a constant that depends only on *p*, *q*, and *d*, and *p'* is the dual exponent of *p*, that is, $\frac{1}{p} + \frac{1}{p'} = 1$.

The conditions on p and q are optimal (see [10]). The RC has been proved in the case d = 2 by Fefferman and Stein (see [6]) and is still open in higher dimensions. When d > 2 only partial results are known; one of these results is the Stein–Tomas theorem [9; 13], which asserts that the RC holds whenever $1 \le p < \frac{2(d+1)}{d+3}$ and every $q \ge \frac{d-1}{d+1}p'$. See also [10]. When $p = \frac{2(d+1)}{d+3}$ we have $\frac{d-1}{d+1}p' = 2$, and the exponent q = 2 plays a crucial role as it allows a reduction of (1.1) to the equivalent "dual" inequality

$$\left\|\int_{\mathbf{S}^{d-1}} \hat{F}(\zeta) e^{2\pi i \langle x, \zeta \rangle} \, d\sigma(\zeta)\right\|_{L^{p'}(\mathbf{R}^n)} \leq C \|F\|_{L^p(\mathbf{R}^n)}$$

via a TT^* technique. The case q < 2 cannot be handled with the same technique and requires more delicate work.

When $\frac{2(d+1)}{d+3} we can prove that the ratio in (1.1) is uniformly bounded$ $on special subspaces of <math>L^p(\mathbf{R}^d)$. For example, it is easy to see that (1.1) holds for every $q \le 2$ and every $p \le \frac{2d}{d+1}$ if $L^p(\mathbf{R}^d)$ is replaced by the Sobolev space $W^{s,p_0}(\mathbf{R}^d)$, where $p_0 = \frac{2(d+1)}{d+3}$ and $s \ge \frac{d-1}{d(d+1)}$. By the Sobolev embedding theorem, the latter embeds in $L^p(\mathbf{R}^d)$ for every $p \le \frac{2d}{d+1}$.

Received October 31, 2002. Revision received May 22, 2003.

Work of the second author was supported by the National Science Foundation.