Lattice Points inside Random Ellipsoids

S. Hofmann, A. Iosevich, \& D. Weidinger

1. Introduction

Let

$$
\begin{equation*}
N_{a}(t)=\#\left\{t \Omega_{a} \cap \mathbb{Z}^{d}\right\}, \tag{0.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega_{a}=\left\{\left(a_{1}^{-\frac{1}{2}} x_{1}, a_{2}^{-\frac{1}{2}} x_{2}, \ldots, a_{d}^{-\frac{1}{2}} x_{d}\right): x \in \Omega\right\} \tag{0.2}
\end{equation*}
$$

with $\frac{1}{2} \leq a_{j} \leq 2$ and where Ω is the unit ball.
Let

$$
\begin{equation*}
N_{a}(t)=t^{d}\left|\Omega_{a}\right|+E_{a}(t) \tag{0.3}
\end{equation*}
$$

A classical result due to Landau states that

$$
\begin{equation*}
\left|E_{a}(t)\right| \lesssim t^{d-2+\frac{2}{d+1}} \tag{0.4}
\end{equation*}
$$

here and throughout the paper, $A \lesssim B$ means that there exists a positive constant C such that $A \leq C B$. Similarly, $A \lesssim B$, with a parameter t, means that given $\delta>0$ there exists a $C_{\delta}>0$ such that $A \leq C_{\delta} t^{\delta} B$.

A number of improvements over (0.4) have been obtained over the years in two and three dimensions. The best-known result in three dimensions (to the best of our knowledge) is $\left|E_{a}(t)\right| \lesssim t^{\frac{21}{16}}$ proved by Heath-Brown [HB], improving on an earlier breakthrough due to Vinogradov [V]. It is proved by Szegö that

$$
\begin{equation*}
\left|E_{1,1,1}(t)-\frac{4 \pi}{3} t^{3}\right| \gtrsim t \log (t) . \tag{0.5}
\end{equation*}
$$

In two dimensions, the best-known result is $\left|E_{a}(t)\right| \lesssim t^{\frac{46}{73}}$ due to Huxley [Hu]. A classical result due to Hardy says that

$$
\begin{equation*}
\left|E_{1,1}(t)-\pi t^{2}\right| \gtrsim t^{\frac{1}{2}} \log ^{\frac{1}{2}}(t) \tag{0.6}
\end{equation*}
$$

Thus it is reasonable to conjecture that the estimate

$$
\begin{equation*}
\left|E_{a}(t)\right| \lesssim t^{\frac{d-1}{2}} \tag{0.7}
\end{equation*}
$$

holds in \mathbb{R}^{2} and \mathbb{R}^{3}.

[^0]
[^0]: Received July 22, 2002. Revision received July 21, 2003.
 Research supported in part by NSF Grant no. DMS00-87339.

