Möbius Transformations, the Carathéodory Metric, and the Objects of Complex Analysis and Potential Theory in Multiply Connected Domains

Steven R. Bell

1. Introduction

Let f_{b} denote the Riemann mapping function associated to a point b in a simply connected planar domain $\Omega \neq \mathbb{C}$. Everyone knows that f_{b} is the solution to an extremal problem; it is the holomorphic map h of Ω into the unit disc such that $h^{\prime}(b)$ is real and as large as possible. Everyone knows also that all the maps f_{b} can be expressed in terms of a single Riemann map f_{a} associated to a point $a \in \Omega$ via

$$
\begin{equation*}
f_{b}(z)=\lambda \frac{f_{a}(z)-f_{a}(b)}{1-f_{a}(z) \overline{f_{a}(b)}}, \tag{1.1}
\end{equation*}
$$

where the unimodular constant λ is given by

$$
\lambda=\frac{\overline{f_{a}^{\prime}(b)}}{\left|f_{a}^{\prime}(b)\right|}
$$

In this paper, I shall prove that solutions to the analogous extremal problems on a finitely multiply connected domain in the plane, the Ahlfors mappings, can be expressed in terms of just two fixed Ahlfors mappings. Many similarities with formula (1.1) in the simply connected case will become apparent, and I will explore some of the algebraic objects that present themselves. A by-product of these considerations will be that the infinitesimal Carathéodory metric on a multiply connected domain is simply a rational combination of two Ahlfors maps times one of their derivatives. I will explain an outlook that reveals a natural way to view the extremal functions involved in the definition of the Carathéodory metric "off the diagonal" in such a way that they extend to $\hat{\Omega} \times \hat{\Omega}$, where $\hat{\Omega}$ is the double of Ω.

I will also investigate the complexity of the classical Green's function and Bergman kernel associated to a multiply connected domain. In particular, it is proved in Section 6 that if Ω is a finitely connected domain in the plane such that no boundary component is a point, then there exist two Ahlfors maps f_{a} and f_{b} associated to Ω such that the Bergman kernel for Ω is given by

$$
K(w, z)=\frac{f_{a}^{\prime}(w) \overline{f_{a}^{\prime}(z)}}{\left(1-f_{a}(w) \overline{f_{a}(z)}\right)^{2}}\left(\sum_{j, k=1}^{N} \lambda_{j k} H_{j}(w) \overline{H_{k}(z)}\right),
$$

[^0]
[^0]: Received January 16, 2002. Revision received August 20, 2002.
 Research supported by NSF Grant no. DMS-0072197.

