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1. Introduction

Let fb denote the Riemann mapping function associated to a pointb in a simply
connected planar domain� 6= C. Everyone knows thatfb is the solution to an ex-
tremal problem; it is the holomorphic maph of� into the unit disc such thath′(b)
is real and as large as possible. Everyone knows also that all the mapsfb can be
expressed in terms of a single Riemann mapfa associated to a pointa ∈� via

fb(z) = λ fa(z)− fa(b)
1− fa(z)fa(b)

, (1.1)

where the unimodular constantλ is given by

λ = f ′a(b)
|f ′a(b)|

.

In this paper, I shall prove that solutions to the analogous extremal problems on
a finitely multiply connected domain in the plane, the Ahlfors mappings, can be
expressed in terms of justtwofixed Ahlfors mappings. Many similarities with for-
mula(1.1) in thesimply connected case will become apparent, and I will explore
some of the algebraic objects that present themselves. A by-product of these con-
siderations will be that the infinitesimal Carathéodory metric on a multiply con-
nected domain is simply a rational combination of two Ahlfors maps times one of
their derivatives. I will explain an outlook that reveals a natural way to view the
extremal functions involved in the definition of the Carathéodory metric “off the
diagonal” in such a way that they extend to�̂× �̂, where�̂ is the double of�.

I will also investigate the complexity of the classical Green’s function and
Bergman kernel associated to a multiply connected domain. In particular, it is
proved in Section 6 that if� is a finitely connected domain in the plane such that
no boundary component is a point, then there exist two Ahlfors mapsfa andfb
associated to� such that the Bergman kernel for� is given by

K(w, z) = f ′a(w)f ′a(z)
(1− fa(w)fa(z))2

( N∑
j,k=1

λjkHj(w)Hk(z)

)
,
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