Bordism of Unoriented Surfaces in 4-Space

J. Scott Carter, Seifchi Kamada, Masahico Saito, \& Shin Satoh

1. Introduction

Sanderson [9;10] studied the group $L_{m, n}$ of bordism classes of "oriented" closed ($m-2$)-manifolds of n components in \mathbf{R}^{m}. He showed that $L_{m, n}$ is isomorphic to the homotopy group $\pi_{m}\left(\bigvee_{i=1}^{n-1} S^{2}\right)$; in particular, the bordism group $L_{m, n}$ for $m=4$ is given as follows.

Theorem 1.1 (Sanderson).

$$
L_{4, n} \cong(\underbrace{\mathbf{Z}_{2} \oplus \cdots \oplus \mathbf{Z}_{2}}_{\frac{n(n-1)}{2}}) \oplus(\underbrace{\mathbf{Z} \oplus \cdots \oplus \mathbf{Z}}_{\frac{n(n-1)(n-2)}{3}})
$$

In particular, we have $L_{4,1} \cong\{0\}, L_{4,2} \cong \mathbf{Z}_{2}$, and $L_{4,3} \cong \mathbf{Z}_{2}^{3} \oplus \mathbf{Z}^{2}$.
Similarly, there is a group of bordism classes of "unoriented" closed $(m-2)$ manifolds of n components in \mathbf{R}^{m}. We denote the group by $U L_{m, n}$. The aim of this paper is to determine the bordism group $U L_{m, n}$ for $m=4$ via purely geometric techniques.

An n-component surface link F is a closed surface embedded in \mathbf{R}^{4} (smoothly, or PL and locally flatly) such that an integer in $\{1, \ldots, n\}$, called the label, is assigned to each connected component. We denote by $\alpha(K)$ the label of a connected component K of F. The i th component of F is the union of the connected components of F that have label i. The i th component may be orientable or not, and it could be empty. We often denote an n-component surface link F by $F_{1} \cup \cdots \cup F_{n}$, where each F_{i} is the i th component of F. Two n-component surface links F and F^{\prime} are unorientedly bordant if there is a compact 3-manifold $W=$ $\bigcup_{i=1}^{n} W_{i}$ properly embedded in $\mathbf{R}^{4} \times[0,1]$ such that $\partial W_{i}=F_{i} \times\{0\} \cup F_{i}^{\prime} \times\{1\}$ for $i=1, \ldots, n$. In this paper, $F \simeq_{B} F^{\prime}$ means that F and F^{\prime} are unorientedly bordant, and $F \cong_{A} F^{\prime}$ means that they are ambient isotopic in \mathbf{R}^{4}. The unoriented bordism classes of n-component surface links form an abelian group $U L_{4, n}$ such that the sum $[F]+\left[F^{\prime}\right]$ is defined to be the class $\left[F \amalg F^{\prime}\right]$ of the split union $F \amalg F^{\prime}$. The identity is represented by the empty $F=\emptyset$ and the inverse $-[F]$ is represented by the mirror image of F. The following is our main theorem.

