On Fixed Points and Determining Sets for Holomorphic Automorphisms

B. L. Fridman, K. T. Kim, S. G. Krantz, \& D. Ma

0. Introduction

It is a result of classical function theory (see [FiF; Les; Mas; PeL; S]) that if $f: U \rightarrow U$ is a conformal self-mapping of a plane domain that fixes three distinct points then $f(\zeta) \equiv \zeta$. The purpose of the present paper is to put this result into a geometrically natural context and to extend it to higher-dimensional domains and manifolds. For an examination of fixed point questions from a slightly different point of view, we refer the reader to the work of Vigué (see e.g. [V1; V2]).

The third-named author thanks Robert Burckel for early discussions of this topic and for basic references.

1. Spanning Cartan-Hadamard Subsets

In this section, we let M be a connected, complete Riemannian manifold.

1.1. Cut Points and Cut Loci

Let $x \in M$. A point $y \in M$ is called a cut point of x if there are two or more length-minimizing geodesics from x to y in M. We also use the following basic terminology and facts from Riemannian geometry. A geodesic $\gamma:[a, b] \rightarrow M$ is called a length-minimizing geodesic (or, alternatively, a minimal geodesic or a minimal connector) from x to y if $\gamma(a)=x, \gamma(b)=y$, and $\operatorname{dis}(x, y)=\operatorname{arc}$ length of γ. Any two points in a complete Riemannian manifold can be connected by a minimizing geodesic by the Hopf-Rinow theorem. If there is a smooth family of minimizing geodesics from x to y, then these two points are said to be conjugate. Conjugate points are cut points. The collection of cut points of x in M is called the cut locus of x, which we denote by C_{x} in this paper. It is known that C_{x} is nowhere dense in M (see e.g. [GKM; K]).

1.2. Spanning Cartan-Hadamard Sets

A subset X of M is a Cartan-Hadamard set if there exists an $x_{0} \in X$ such that $X \subset$ $M \backslash C_{x_{0}}$. We will call x_{0} a pole of X. A pole of a set is in no way unique. But, for

[^0]
[^0]: Received June 8, 2001. Revision received December 13, 2001.
 The research of the second-named author is supported in part by KOSEF Interdisciplinary Research Program 1999-2-102-003-5 of The Republic of Korea.

