ASYMPTOTIC VALUES OF MEROMORPHIC FUNCTIONS

K. F. Barth

1. INTRODUCTION

Let $\mathfrak D$ denote the unit disc $\{|z|<1\}$, and let $\mathfrak C$ denote the unit circle $\{|z|=1\}$. The purpose of this paper is to derive some results on asymptotic values of functions meromorphic in $\mathfrak D$. G. R. MacLane [12, p. 7] considered the classes $\mathcal A$, $\mathcal B$, and $\mathcal L$ of functions that are nonconstant and holomorphic in $\mathfrak D$. $\mathcal A$ is the class of functions having asymptotic values at a dense set on $\mathfrak C$. $\mathcal B$ is the class of functions for which there exists a set of Jordan arcs Γ in $\mathfrak D$, with end points dense on $\mathfrak C$, such that on each Γ either $f\to\infty$ or f is bounded. The class $\mathcal L$ is defined as follows: $f\in \mathcal L$ if and only if each level set $\{z\colon |f(z)|=\lambda\}$ "ends at points" of $\mathfrak C$ (the precise definition will be found early in Section 3). MacLane proved that $\mathcal A=\mathcal B=\mathcal L$. We shall consider the corresponding classes $\mathcal A_m$, $\mathcal B_m$, and $\mathcal L_m$ of meromorphic functions.

The classes \mathcal{A}_{m} , \mathcal{B}_{m} , and \mathcal{L}_{m} are defined in Section 3. We prove that

$$\mathscr{A}_{\mathrm{m}} \subset \mathscr{B}_{\mathrm{m}} \quad \text{ and } \quad \mathscr{L}_{\mathrm{m}} \subset \mathscr{B}_{\mathrm{m}},$$

and we give examples showing that

$$\mathcal{B}_{\mathbf{m}} \not\subset \mathcal{A}_{\mathbf{m}}, \quad \mathcal{B}_{\mathbf{m}} \not\subset \mathcal{Q}_{\mathbf{m}}, \quad \mathcal{A}_{\mathbf{m}} \not\subset \mathcal{Q}_{\mathbf{m}}, \quad \mathcal{Q}_{\mathbf{m}} \not\subset \mathcal{A}_{\mathbf{m}}.$$

Section 4 is concerned with the existence of asymptotic values on sets of positive measure. We prove (Theorem 5) that if $f \in \mathscr{A}_m$ and there exists a complex number a (possibly ∞) such that N(r, a, f) = O(1), then on each subarc γ of $\mathfrak C$ on which f does not have the asymptotic value a, f has asymptotic values on a set of positive measure. Here N(r, a, f) denotes the Nevanlinna counting function of f. Theorem 5 generalizes a theorem of MacLane [12, Theorem 11]. This result, together with Theorem 8, extends a theorem of Bagemihl [1, Theorem 1], which is a generalization of [4, Theorem 3].

In Section 5 we establish sufficient conditions for f to belong to $\mathcal{A}_{\rm m}$. The fundamental condition (see Theorem 7) is as follows. If there exist a complex number a (possibly ∞) and a set Θ , dense on $[0, 2\pi]$, such that

$$\int_0^1 (1-r) \log^+ \left| \frac{1}{f(re^{i\theta}) - a} \right| dr < \infty \quad \text{and} \quad N(r, a, f) = O(1) \quad (\theta \in \Theta, a \neq \infty),$$

then $f \in \mathcal{A}_{m}$. (If $a = \infty$, change 1/(f - a) to f.) A more restrictive condition is

$$\int_0^1 (1 - r) T(r) dr < \infty \quad \text{and} \quad N(r, a, f) = O(1),$$

Received July 30, 1965 and December 24, 1965.

This research was supported by the National Aeronautics and Space Administration.