THE DERIVED SETS OF A LINEAR SET

George Piranian

For an arbitrary set E on the x-axis and an ordinal number b, let E^b denote the derived set of order b of E (the definition of the derived sets of a set, together with a discussion of many of their properties, was given by Cantor [2, pp. 98, 139-246]; for an excellent concise treatment of the material which is used here, see Baire [1, Chpt. III, especially §§ 32, 41, 42]). Since the set E^Ω , where Ω denotes the least nondenumerable ordinal number, is perfect, $E^b = E^\Omega$ for all $b > \Omega$. If a point x in E does not lie in E^Ω , the least ordinal b for which x does not lie in E^b is of the first kind; for if x lies in every set E^a (a < b) and b is án ordinal of the second kind, then, since E^b is the intersection of the closed sets E^a (a < b), the point x lies also in E^b . It follows that for every x in $E - E^\Omega$ there exists a greatest ordinal b for which x lies in E^b . This suggests the following definition of an ordinal-valued function p(x, E). For an arbitrary fixed set E and each point x, let

$$p(x, E) = \Omega$$
 if x lies in E^{Ω} ,
 $p(x, E) = 0$ if x does not lie in E^{1} ,
 $p(x, E) = b$ if x lies in E^{b} but not in E^{b+1} .

It is the purpose of this note to characterize, among all the ordinal-valued functions p(x), those functions for which there exists a point set E such that $p(x, E) \equiv p(x)$.

THEOREM. If p(x) is an ordinal-valued function defined on the x-axis, a necessary and sufficient condition for the existence of a point set E with p(x, E) = p(x) is that p(x) have the following properties:

- (1) the set where $p(x) = \Omega$ is perfect, and the set where $p(x) > \Omega$ is empty;
- (2) for each b $(0 < b < \Omega)$, the set where p(x) = b is isolated;
- (3) for each point x_0 , the inequality $p(x) \le p(x_0)$ holds throughout some neighborhood of x_0 ;
- '(4) if $p(x_0) < \Omega$ and $a < p(x_0)$, then p(x) takes the value a in every neighborhood of x_0 .

The necessity of the condition is not new. Indeed, if there exists a set E such that p(x, E) = p(x), then (1) follows from the fact that E^{Ω} is perfect, and (2) and (3) follow from the fact that every limit point of E^b belongs to E^{b+1} ($b \ge 1$). Finally, if x_0 lies in an open interval I in which $p(x) < \Omega$, and if p(x) does not take the value a in I, then $E^a = E^{a+1}$ in I; since $I \cap E^{\Omega}$ is empty, this implies that $I \cap E^a$ is also empty, and therefore p(x) < a throughout I.

Received August 3, 1955.

This note was written under Contract DA 20-018-ORD-13585 between the Office of Ordnance Research and the Engineering Research Institute of the University of Michigan.