A THEOREM OF FRIEDRICHS

R. C. Lyndon

§1. Friedrichs [2] has given a characterization of the Lie elements among the set of noncommutative polynomials. A proof of the characterization theorem was also given by Magnus [3], who refers to other proofs by P. M. Cohn and D. Finkelstein. It is the purpose of the present paper to give a short proof of the theorem.

Let Φ be the free associative ring, over a field K of characteristic zero, of polynomials $F(x) = F(x_1, x_2, \cdots)$ in the noncommuting indeterminates x_1, x_2, \cdots . Let Λ be the K-submodule of Φ generated by the x_1, x_2, \cdots under the operation of forming commutators [G, H] = GH - HG. A *Lie element* of Φ is a member of Λ .

THEOREM (Friedrichs). F(x) is a Lie polynomial if and only if the relations

$$x_i'x_j'' = x_j''x_i'$$

imply

(1)
$$F(x' + x'') = F(x') + F(x'').$$

§2. Induction from Lie elements G, H to [G, H], together with linearity, establishes that (1) holds for every Lie element F.

For the converse, begin by introducing the left, right, and adjoint representations L, R, and A = R - L of Φ . These are defined, on the free generators x_i , and for each element u of Φ , by the relations

$$uR(x_i) = ux_i,$$

 $uL(x_i) = x_iu,$
 $uA(x_i) = ux_i - x_iu = [u, x_i].$

Since the $R(x_i)$ commute with the $L(x_j)$, condition (1) on F(x) implies that

$$uF(A(x)) = uF(R(x)) + uF(-L(x))$$
.

Clearly uF(R(x)) = uF(x), while uF(-L(x)) = F(x)*u, where F(x)* is defined by the equation

$$(x_{i_1} x_{i_2} \cdots x_{i_n})^* = (-1)^n x_{i_n} \cdots x_{i_2} x_{i_1}$$

and the condition of linearity. Thus (1) gives

(2)
$$uF(A(x)) = uF(x) + F(x)*u$$
.

Induction from G, H to [G, H] establishes that

(3)
$$F^* = -F$$
, for each Lie element F .

Received February 22, 1955.