Twins of k-Free Numbers and Their Exponential Sum

J. Brüdern, A. Perelli, \& T. D. Wooley

1. Introduction

For any integer $k \geq 2$, let $\mu_{k}(n)$ denote the characteristic function on the set of k-free numbers; that is, $\mu_{k}(n)=0$ if there is a prime p with $p^{k} \mid n$, and $\mu_{k}(n)=$ 1 otherwise. A twin of k-free numbers is a natural number n such that $\mu_{k}(n)=$ $\mu_{k}(n+1)=1$. It has long been known that the set of these twins has positive density

$$
\begin{equation*}
\varrho=\varrho_{k}=\prod_{p}\left(1-\frac{2}{p^{k}}\right) \tag{1.1}
\end{equation*}
$$

although the first explicit reference to an asymptotic formula for the counting function

$$
A_{k}(x)=\sum_{n \leq x} \mu_{k}(n) \mu_{k}(n+1)
$$

seems to be a paper by Carlitz [2], the estimate

$$
\begin{equation*}
A_{k}(x)=\varrho x+O\left(x^{2 /(k+1)+\varepsilon}\right) \tag{1.2}
\end{equation*}
$$

is at least implicit in the work of Evelyn and Linfoot [4] and Estermann [3]. The latter formula (1.2) was then proved in refined form, with x^{ε} replaced by $(\log x)^{4 / 3}$, by Mirsky [7]. More recently, Heath-Brown [5] considered the case $k=2$ and obtained (1.2) with $O\left(x^{7 / 11+\varepsilon}\right)$ in place of $O\left(x^{2 / 3+\varepsilon}\right)$.

In this paper we study the exponential sum

$$
\begin{equation*}
S(\alpha)=S_{k}(\alpha)=\sum_{n \leq x} \mu_{k}(n) \mu_{k}(n+1) e(\alpha n) \tag{1.3}
\end{equation*}
$$

associated with k-free twins. In recent years there has been an increased interest in the L_{1}-norm of exponential sums over reasonably dense sets of which the k-free twins form an example. Our first theorem adds to the small stock of such sums for which a nontrivial estimate can be obtained.

Theorem 1. Let $k \geq 2$. Then

$$
\int_{0}^{1}\left|S_{k}(\alpha)\right| d \alpha \ll x^{1 /(k+1)+\varepsilon} .
$$

[^0]
[^0]: Received June 8, 1999. Revision received December 27, 1999.

