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Lq-Differentials for Weighted Sobolev Spaces

Jana Björ n

1. Introduction

Let B(x0, r) denote the open ball inRn with centerx0 and radiusr. Throughout
the paper we assume that all measures are Borel and satisfy 0< µ(B) < ∞ for
all ballsB.

Definition 1.1. Letµ be a measure onRn. We say that a functionu is differen-
tiable atx0 in theLq(µ) senseif

lim
r→0

1

r

(∫
B(x0,r)

|u(x)− u(x0)−∇u(x0) · (x − x0)|q dµ(x)
)1/q

= 0. (1)

Here and in what follows, the symbol
∫

stands for the mean-value integral∫
B

f dµ = 1

µ(B)

∫
B

f dµ.

Forµ equal to the Lebesgue measure, the following theorem aboutLq-differ-
entials of Sobolev functions is well known (see e.g. Theorem 12 in Calderón and
Zygmund [3] or Theorem 1, Chapter VIII in Stein [14]).

Theorem 1.2. Let u be a function from the Sobolev spaceH 1,p(�), where
� ⊂ Rn (n ≥ 2) and 1 ≤ p < n. Thenu is differentiable in theLq sense
with q = np/(n − p) a.e. in�. If p = n, then the same is true for allq < ∞.
Moreover, ifu∈H 1,p(�) andp > n, thenu can be modified on a set of measure
zero so that it becomes differentiable a.e. in� in the classical sense.

Theorem 1.2 can be regarded as a higher-order analog of the classical Lebesgue
differentiation theorem: Ifu ∈Lploc(R

n, µ), 1≤ p <∞, andµ is a Radon mea-
sure, thenµ-a.e.x0 ∈Rn is anLp(µ)-Lebesgue point ofu; that is,

lim
r→0

(∫
B(x0,r)

|u(x)− u(x0)|p dµ(x)
)1/p

= 0. (2)
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