Davis's Inequality for Orthogonal Martingales under Differential Subordination

RODRIGO BAÑUELOS & GANG WANG

1. Introduction

Consider two \mathbb{H} -valued semimartingales *X* and *Y*, where \mathbb{H} is a separable Hilbert space with norm $|\cdot|$ and inner product $\langle \cdot, \cdot \rangle$. We denote by $\mathcal{F} = \{\mathcal{F}_t\}_{t\geq 0}$ their common filtration, which is a family of right-continuous sub- σ -fields in a probability space $\{\Omega, \mathcal{A}, P\}$. We also assume that \mathcal{F}_0 contains all the sets of probability zero. We use the notation $[X, Y] = \{[X, Y]_t\}_{t\geq 0}$ to denote the quadratic covariation process between *X* and *Y* (see e.g. [DM]). Unless otherwise stated, we assume that all semimartingales have right-continuous paths with left limits (r.c.l.l.). For notational simplicity, we use $[X] = \{[X]_t\}_{t\geq 0}$ to denote [X, X].

Since all the results in the paper are invariant under Hilbert space isomorphisms, we can restrict to the spaces of square integrable sequences.

We say that *Y* is *differentially subordinate* to *X* if $[X]_t - [Y]_t$ is nondecreasing and nonnegative as a function of *t*. A slightly weaker notion of martingale differential subordination was first introduced by Burkholder for discrete-time martingales and certain stochastic integrals (see [Bu1; Bu2; Bu3; Bu4; Bu5; Bu6] for connections and applications to various settings in Banach spaces). For continuous parameter martingales with continuous paths, this definition was introduced by Bañuelos and Wang [BW1] and for continuous parameter martingales by Wang [W]. With this definition of subordination, Bañuelos and Wang [BW1] and Wang [W] extended various sharp martingale inequalities of Burkholder [Bu1–Bu5] from the discrete-time and certain stochastic integral settings to general continuous parameter martingales. In particular, the following theorem was proved in Wang [W] (see also [BW1]). We use the notation $||X||_p$ to denote $\sup_{t>0} ||X_t||_p$.

THEOREM 1.1. Let X and Y be two \mathbb{H} -valued continuous-time parameter martingales such that Y is differentially subordinate to X. Then, for 1 ,

$$\|Y\|_{p} \le (p^{*} - 1)\|X\|_{p}.$$
(1.1)

This inequality is sharp, and it is also strict if $p \neq 2$ and $0 < ||X||_p < \infty$.

Received April 1, 1999. Revision received November 29, 1999.

R. Bañuelos was partially supported by NSF 9700585-DMS; G. Wang was partially supported by NSF 9707011-DMS and a grant from the University Research Council of DePaul University.