Davis's Inequality for Orthogonal Martingales under Differential Subordination

Rodrigo Bañuelos \& Gang Wang

1. Introduction

Consider two \mathbb{H}-valued semimartingales X and Y, where \mathbb{H} is a separable Hilbert space with norm $|\cdot|$ and inner product $\langle\cdot, \cdot\rangle$. We denote by $\mathcal{F}=\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$ their common filtration, which is a family of right-continuous sub- σ-fields in a probability space $\{\Omega, \mathcal{A}, P\}$. We also assume that \mathcal{F}_{0} contains all the sets of probability zero. We use the notation $[X, Y]=\left\{[X, Y]_{t}\right\}_{t \geq 0}$ to denote the quadratic covariation process between X and Y (see e.g. [DM]). Unless otherwise stated, we assume that all semimartingales have right-continuous paths with left limits (r.c.l.l.). For notational simplicity, we use $[X]=\left\{[X]_{t}\right\}_{t \geq 0}$ to denote $[X, X]$.

Since all the results in the paper are invariant under Hilbert space isomorphisms, we can restrict to the spaces of square integrable sequences.

We say that Y is differentially subordinate to X if $[X]_{t}-[Y]_{t}$ is nondecreasing and nonnegative as a function of t. A slightly weaker notion of martingale differential subordination was first introduced by Burkholder for discrete-time martingales and certain stochastic integrals (see [Bu1; Bu2; Bu3; Bu4; Bu5; Bu6] for connections and applications to various settings in Banach spaces). For continuous parameter martingales with continuous paths, this definition was introduced by Bañuelos and Wang [BW1] and for continuous parameter martingales by Wang [W]. With this definition of subordination, Bañuelos and Wang [BW1] and Wang [W] extended various sharp martingale inequalities of Burkholder [Bu1-Bu5] from the discrete-time and certain stochastic integral settings to general continuous parameter martingales. In particular, the following theorem was proved in Wang [W] (see also [BW1]). We use the notation $\|X\|_{p}$ to denote $\sup _{t \geq 0}\left\|X_{t}\right\|_{p}$.

Theorem 1.1. Let X and Y be two \mathbb{H}-valued continuous-time parameter martingales such that Y is differentially subordinate to X. Then, for $1<p<\infty$,

$$
\begin{equation*}
\|Y\|_{p} \leq\left(p^{*}-1\right)\|X\|_{p} \tag{1.1}
\end{equation*}
$$

This inequality is sharp, and it is also strict if $p \neq 2$ and $0<\|X\|_{p}<\infty$.

